Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction scheme species

More complex ions are created lower in the atmosphere. Almost all ions below 70-80 km are cluster ions. Below this altitude range free electrons disappear and negative ions fonn. Tln-ee-body reactions become important. Even though the complexity of the ions increases, the detemiination of the final species follows a rather simple scheme. For positive ions, fomiation of H (H20) is rapid, occurring in times of the order of milliseconds or shorter in the stratosphere and troposphere. After fomiation of H (H20), the chemistry involves reaction with species that have a higher proton affinity than that of H2O. The resulting species can be... [Pg.818]

An alternative approach is to assume, in the light of the experimental evidence just mentioned, that the reactions of cations and neutral molecules have similar values of (or, equivalently, of log ( /l mol and to try to calculate the difference which would arise from the fact that the observed entropy of activation for a minority free base includes a contribution from the acidic dissociation of the conjugate acid in the medium in question (see (5) above). Consider the two following reaction schemes one (primed symbols) represents nitration via the free base, the other the normal nitration of a non-basic majority species (unprimed symbols) ... [Pg.157]

Mechanism. The thermal cracking of hydrocarbons proceeds via a free-radical mechanism (20). Siace that discovery, many reaction schemes have been proposed for various hydrocarbon feeds (21—24). Siace radicals are neutral species with a short life, their concentrations under reaction conditions are extremely small. Therefore, the iategration of continuity equations involving radical and molecular species requires special iategration algorithms (25). An approximate method known as pseudo steady-state approximation has been used ia chemical kinetics for many years (26,27). The errors associated with various approximations ia predicting the product distribution have been given (28). [Pg.434]

Exploitation of analytical selectivity. We have seen, in our discussion of the A —> B C series reaction (Scheme IX), that access to the concentration of A as a function of time is valuable because it permits to be easily evaluated. Modern analytical methods, particularly chromatography, constitute a powerful adjunct to kinetic investigations, and they render nearly obsolete some very difficult kinetic problems. For example, the freedom to make use of the pseudoorder technique is largely dependent upon the high sensitivity of analytical methods, which allows us to set one reactant concentration much lower than another. An interesting example of analytical control in the study of the Scheme IX system is the spectrophotometric observation of the reaction solution at an isosbestic point of species B and C, thus permitting the A to B step to be observed. [Pg.79]

The ionization constant of a typical heterocyclic compound (e.g., quinoline) designates the equilibrium involving a proton, a neutral molecule and its cation. With quinazoline, however, two distinct species (hydrated and anhydrous) are involved each of which is in equilibrium with its cation, and can be represented as in the reaction scheme, (7), (8), (3), and (4). [Pg.259]

All acid-catalyzed electrophilic substitution reactions are held by Treibs to occur by way of the distinct reactive species (23), thus the very greatly accelerated interaction of pyrrole and formaldehyde in acid solution involves attack of neutral formaldehyde on (23). Another example is the interaction of 2,3,4,6-tetramethylpyrrole with p-dimethylaminobenzaldehyde in acid solution, for which the following reaction (Scheme 2) is given,(23a) being presumably intended... [Pg.299]

In the direct coupling reaction (Scheme 30), it is presumed that a coordinatively unsaturated 14-electron palladium(o) complex such as bis(triphenylphosphine)palladium(o) serves as the catalytically active species. An oxidative addition of the organic electrophile, RX, to the palladium catalyst generates a 16-electron palladium(n) complex A, which then participates in a transmetalation with the organotin reagent (see A—>B). After facile trans- cis isomerization (see B— C), a reductive elimination releases the primary organic product D and regenerates the catalytically active palladium ) complex. [Pg.592]

Fig. 17. Unified reaction scheme for the thermal decomposition of ammonium perchlorate, proposed by Jacobs et al. [59,925,926], In the low temperature reaction, the interaction occurs between adsorbed species (a) whereas the high temperature reaction and sublimation process involved volatilization intermediates (g). X] and X2 represent mixtures of intermediates. Fig. 17. Unified reaction scheme for the thermal decomposition of ammonium perchlorate, proposed by Jacobs et al. [59,925,926], In the low temperature reaction, the interaction occurs between adsorbed species (a) whereas the high temperature reaction and sublimation process involved volatilization intermediates (g). X] and X2 represent mixtures of intermediates.
The rate-determining step was, therefore considered to be reaction of bromine with peroxyacetic acid to give a species (suggested as bromine acetate)which subsequently and rapidly, brominates. Formation of bromine acetate was believed to take place according to the reaction scheme represented by equilibrium (158) (which is analogous to the mercuric oxide oxidation of bromine) followed by either equilibrium (159), (160) or (161), viz. [Pg.135]

Since these concepts are really no different from those in the preceding section, the treatment will be abbreviated. Consider the scheme in which a second species B reacts with either A or AL (or, in principle, with both). The reaction scheme and rate, based on the forms in Eq. (6-116), are... [Pg.146]

Furthermore, the reaction scheme implies that the molecular weight distribution is Poisson-like — i.e. very narrow — as it had been shown earlier on theoretical basis by Flory 8), Gold 9), and Szwarc l0>. Even though two (or more) types of active species add monomer at very different rates, the polydispersity remains narrow, provided solvation/desolvation and ionic dissociation/association processes are fast U). [Pg.147]

The stannylenes from either source will insert into the Sn- Sn, Sn-R, or Sn-H bonds of organotin compounds, and react with alkyl halides, disulfides, or peroxides as shown in the reaction scheme below, but only the stannylenes that are generated photolytically will react with carbonyl compounds, and it appears that the stannylenes may exist in two forms, perhaps related as singlet and triplet, or a com-plexed and uncomplexed species. [Pg.28]

The reaction scheme is as follows (Fig. 21). It is reasonable to assume that BTMA Br3 can be dissociated by water as shown in Equation 1. The resulting hypobromous acid may act as the major active oxidizing species and may convert alcohols into esters as Equation 2. In the case of ethers, we can show as Equation 4. Generated hydrobromic acid can be removed by Na2HP04 which has been added previously (Eqn. 5). [Pg.40]

The mixture used in the present simulation is stoichiometric methane-air. Table 3.2.1 shows the chemical reaction schemes for a methane-air mixture, which has 27 species, including 5 ion molecules such as CH% CHO% F130+, CH3+, and C2IT3O and electron and 81 elementary reactions with ion-molecule reactions [9-11]. The reaction rate constants for elementary reaction with ion molecules have been reported in Refs. [10,11]. [Pg.27]

It should be emphasized that the approach proposed is by no means limited to the actual case, hydrogenation of sitosterol, but is a general one for the reaction scheme, which is very common in catalyst poisoning. The methodology with semianalytical solutions of the surface species turned out to be very robust in the... [Pg.183]

Since all the photopolymerizable monomers (A) contain two conjugated double bonds, the tt-tt electronic transition of a dimer and a molecule larger than a dimer (B) is shifted to a higher energy level than that of A. The reaction scheme is as shown in (6)-(ll) (Tamaki et al., 1972), where A and B represent the species A and B, respectively, in the tt-tt excited state. [Pg.135]

Inhibitors are species that bind to enzymes, modifying their activity. Competitive inhibitors bind at the same site as the substrate binds this is analogous to competitive adsorption in heterogeneous catalysis. The reaction scheme becomes ... [Pg.77]

The HOI would be rapidly reduced by iodide and the Mn(V) species would be expected either to disproportionate or to oxidise further iodide. This reaction scheme has features in common with the analogous reaction with cyanide ion discussed below. [Pg.282]

The EPR spectrum shows, in accordance with the XPS results, no feature that can be attributed to Ti centers. What is the nature of the radical observed in the EPR spectrum It might be thought that methyl radicals are the most natural products in the reduction of a mixed titaniiun-chlorine-methyl species according to the following simple reaction scheme ... [Pg.138]

In the oxidation of methanol to CO2, six electrons ate involved. This high number of electrons implies that the mechanism is inevitably very complex, with several intermediate species participating in the mechanism. In spite of its complexity, it has been proposed that the oxidation mechanism follows the same general scheme as the oxidation of formic acid, i.e., a dual path mechanism with active and poisoning intermediates (see the reaction Scheme 6.16) [Parsons and VanderNoot, 1988]. For that reason, we will compare the behavior with that of formic acid to highlight the similarities and differences. [Pg.184]

Figure 13.9 Reaction scheme for Ci molecule oxidation on a Pt/C catalyst electrode, including reversible diffusion from the bulk electrolyte into the catalyst layer, (reversible) adsorption/ desorption of the reactants/products, and the actual surface reactions. The different original reactants (educts) and products are circled. For removal/addition of H, we do not distinguish between species adsorbed on the Pt surface and species transferred directly to neighboring water molecule (H d, H ) therefore, no charges are included (H, e ). For a description of the individual reaction steps, see the text. Figure 13.9 Reaction scheme for Ci molecule oxidation on a Pt/C catalyst electrode, including reversible diffusion from the bulk electrolyte into the catalyst layer, (reversible) adsorption/ desorption of the reactants/products, and the actual surface reactions. The different original reactants (educts) and products are circled. For removal/addition of H, we do not distinguish between species adsorbed on the Pt surface and species transferred directly to neighboring water molecule (H d, H ) therefore, no charges are included (H, e ). For a description of the individual reaction steps, see the text.
The results have been compared with the earlier proposal of a dual-pathway mechanism for Cl oxidation, and, together with previous experimental and theoretical results, summarized in a comprehensive reaction scheme that explicitly includes also the (reversible) exchange between adsorbed species, dissolved product species in the catalyst layer, and similar species in the bulk electrolyte. The traditional dualpathway mechanism, where both the direct and indirect pathways lead to CO2 formation, has beenextended by adding a third pathway that accounts for formation and desorption of incomplete oxidation products. In the mechanistic discussion, we have focused on the role in and contribution to the Ci oxidation process of the formation/desorption and re-adsorption plus further oxidation of incomplete oxidation products. This not only leads to faradaic currents exceeding that for CO2 formation, but may result in additional COad and CO2 formation, via adsorption and oxidation of the incomplete oxidation products. [Pg.453]


See other pages where Reaction scheme species is mentioned: [Pg.819]    [Pg.47]    [Pg.86]    [Pg.89]    [Pg.737]    [Pg.59]    [Pg.231]    [Pg.232]    [Pg.33]    [Pg.1057]    [Pg.113]    [Pg.68]    [Pg.84]    [Pg.452]    [Pg.174]    [Pg.803]    [Pg.176]    [Pg.53]    [Pg.176]    [Pg.125]    [Pg.159]    [Pg.272]    [Pg.21]    [Pg.1057]    [Pg.191]    [Pg.257]    [Pg.412]    [Pg.447]    [Pg.539]   
See also in sourсe #XX -- [ Pg.160 , Pg.161 ]




SEARCH



Reaction scheme

Reaction species

© 2024 chempedia.info