Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction rates variation

For the accurate, a priori calculation of reaction rates, variational transition state calculations are now the method of choice. These calculations are capable of giving the highest-accuracy results, but can be technically dilficult to perform... [Pg.169]

Specific alterations of the relative reactivity due to hydrogen bonding in the transition state or to a cyclic transition state or to electrostatic attraction in quaternary compounds or protonated azines are included below (cf. also Sections II, B, 3 II, B, 5 II, C and II, F). A-Protonation is often reflected in an increase in JS and therefore the relative reactivity can vary with the significance of JS in controlling the reaction rate. Variation can also result from rate determination by the second stage of the SjjAr2 mechanism or from the intervention of thermodynamic control of product formation. Variation in the rate and in the reactivity pattern of polyazanaph-thalenes will result when nucleophilic substitution [Eq. (10)] occurs only on a covalent adduct (408) of the substrate rather than on its aromatic form (400). This covalent addition is prevented by any 4-... [Pg.362]

We were not able to obtain any cycloadduct from unactivated 2-azadienes 139 and esters of acetylenedicarboxylic acid. However, we found that 139 did cycloadd to typical electron-poor dienophiles such as esters of azodicarboxylic acid and tetracyanoethylene (Scheme 62). Thus, diethyl and diisopropyl azodicarboxylates underwent a concerted [4 + 2] cycloaddition with 139 to afford in a stereoselective manner triazines 278 in 85-90% yield (86CC1179). The minor reaction-rate variations observed with the solvent polarity excluded zwitterionic intermediates on the other hand, AS was calculated to be 48.1 cal K 1 mol-1 in CC14, a value which is in the range of a concerted [4 + 2] cycloaddition. Azadienes 139 again reacted at room temperature with the cyclic azo derivative 4-phenyl-1,2,4-triazoline-3,5-dione, leading stereoselectively to bicyclic derivatives 279... [Pg.55]

Integral data (a) fits the conversion-space time graph and, (f>) varies in a particular way with reactant concentration. The differential reactor data have to fit only the reaction rate variation with initial concentration. [Pg.152]

S. C. Tucker and D. G. Truhlar, /. Am. Chem. Soc., 112, 3347 (1990). The Effect of Nonequilibrium Solvation on Chemical Reaction Rates. Variational Transition State Theory Studies of the Microsolvated Reaction C1 (H20) + CH3CI. [Pg.143]

FIGURE 18.15 Influence of surfactants on the reaction rate, variation of amphiphile interfacial covering F (1% acetic acid, 10% tri-n-octylamine in isododecane, 298 K, or = 180 rpm). [Pg.479]

The smdy of properties of E, which depends on the morphology and, as we shall see, is often the only measure that varies with time in isothermal and isobaric conditions. Hence the reaction rate variations with time are in fact variations of the space function. [Pg.357]

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

For analysing equilibrium solvent effects on reaction rates it is connnon to use the thennodynamic fomuilation of TST and to relate observed solvent-mduced changes in the rate coefficient to variations in Gibbs free-energy differences between solvated reactant and transition states with respect to some reference state. Starting from the simple one-dimensional expression for the TST rate coefficient of a unimolecular reaction a— r... [Pg.833]

Keck J 1960 Variational theory of chemical reaction rates applied to three-body recombinations J. Chem. Phys. 32 1035 Anderson J B 1973 Statistical theories of chemical reactions. Distributions in the transition region J. Chem. Phys. 58 4684... [Pg.896]

Poliak E, Tucker S C and Berne B J 1990 Variational transition state theory for reaction rates in dissipative systems Phys. Rev. Lett. 65 1399... [Pg.897]

In the reaction kinetics context, the tenn nonlinearity refers to the dependence of the (overall) reaction rate on the concentrations of the reacting species. Quite generally, the rate of a (simple or complex) reaction can be defined in temis of the rate of change of concentration of a reactant or product species. The variation of this rate with the extent of reaction then gives a rate-extent plot. Examples are shown in figure A3.14.1. In... [Pg.1093]

Figure A3.14.2. Characteristic features of a clock reaction, illustrated for the Landolt reaction, showing (a) variation of product concentration witii induction period followed by sharp reaction event (b) variation of overall reaction rate witli course of reaction. Figure A3.14.2. Characteristic features of a clock reaction, illustrated for the Landolt reaction, showing (a) variation of product concentration witii induction period followed by sharp reaction event (b) variation of overall reaction rate witli course of reaction.
The microscopic understanding of tire chemical reactivity of surfaces is of fundamental interest in chemical physics and important for heterogeneous catalysis. Cluster science provides a new approach for tire study of tire microscopic mechanisms of surface chemical reactivity [48]. Surfaces of small clusters possess a very rich variation of chemisoriDtion sites and are ideal models for bulk surfaces. Chemical reactivity of many transition-metal clusters has been investigated [49]. Transition-metal clusters are produced using laser vaporization, and tire chemical reactivity studies are carried out typically in a flow tube reactor in which tire clusters interact witli a reactant gas at a given temperature and pressure for a fixed period of time. Reaction products are measured at various pressures or temperatures and reaction rates are derived. It has been found tliat tire reactivity of small transition-metal clusters witli simple molecules such as H2 and NH can vary dramatically witli cluster size and stmcture [48, 49, M and 52]. [Pg.2393]

When a chemical reaction takes place at the solid surface, we expect a smooth variation in gas composition in the macropores on a scale comparable with the whole pellet, provided the reaction rate is not too high. [Pg.79]

Several VTST techniques exist. Canonical variational theory (CVT), improved canonical variational theory (ICVT), and microcanonical variational theory (pVT) are the most frequently used. The microcanonical theory tends to be the most accurate, and canonical theory the least accurate. All these techniques tend to lose accuracy at higher temperatures. At higher temperatures, excited states, which are more difficult to compute accurately, play an increasingly important role, as do trajectories far from the transition structure. For very small molecules, errors at room temperature are often less than 10%. At high temperatures, computed reaction rates could be in error by an order of magnitude. [Pg.167]

Alkynes are often less accessible and less stable than the corresponding alkenes. (2) The generally slower reaction rate with alkynes usually leads to lower yields. (3) Alkenes provide better regiospecificity than alkynes because alkenes have more variation in substitution and some substituents have a pronounced directional effect. [Pg.69]

FIG. 16 Variation of the steady-state rate of production, Pcoj, with Pco in the NO + CO lattice gas model with NO desorption (rate d o = 0.5), and CO desorption at various rates (shown). The inset shows the reaction rate measured experimentally at 410 K. (From Ref. 81.)... [Pg.417]

There is a third experimental design often used for studies in electrolyte solutions, particularly aqueous solutions. In this design the reaction rate is studied as a function of ionic strength, and a rate variation is called a salt effect. In Chapter 5 we derived this relationship between the observed rate constant k and the activity coefficients of reactants l YA, yB) and transition state (y ) ... [Pg.386]

Although intrinsic reaction coordinates like minima, maxima, and saddle points comprise geometrical or mathematical features of energy surfaces, considerable care must be exercised not to attribute chemical or physical significance to them. Real molecules have more than infinitesimal kinetic energy, and will not follow the intrinsic reaction path. Nevertheless, the intrinsic reaction coordinate provides a convenient description of the progress of a reaction, and also plays a central role in the calculation of reaction rates by variational state theory and reaction path Hamiltonians. [Pg.181]

Since the revised Biginelli mechanism was reported in 1997, numerous papers have appeared addressing improvements and variations of this reaction. The improvements include Lewis acid catalysis, protic acid catalysis, non-catalytic conditions, and heterogeneous catalysis. In addition, microwave irradiation (MWI) has been exploited to increase the reaction rates and yields. [Pg.511]

Benzofuroxan 79 can be generated from 2-nitrophenyl azide 80 (Scheme 49). Neighboring-group assistance within the pyrolysis leads to a one-step mechanism with an activation barrier of 24.6 kcal/mol at the CCSD(T)/6-31 lG(2d,p) level [99JPC(A)9086]. This value closely resembles the experimental one of 25.5 kcal/mol. Based on the ab initio results for this reaction, rate constants were computed using variational transition state theory. [Pg.35]


See other pages where Reaction rates variation is mentioned: [Pg.388]    [Pg.71]    [Pg.715]    [Pg.210]    [Pg.362]    [Pg.74]    [Pg.161]    [Pg.316]    [Pg.388]    [Pg.71]    [Pg.715]    [Pg.210]    [Pg.362]    [Pg.74]    [Pg.161]    [Pg.316]    [Pg.830]    [Pg.840]    [Pg.842]    [Pg.169]    [Pg.419]    [Pg.340]    [Pg.403]    [Pg.516]    [Pg.522]    [Pg.504]    [Pg.352]    [Pg.372]    [Pg.307]    [Pg.324]    [Pg.360]   
See also in sourсe #XX -- [ Pg.266 ]




SEARCH



Reaction rate prediction variational transition state theory

Reaction rate variation with temperature

© 2024 chempedia.info