Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction products developing

In chemiluminescence, some of the chemical reaction products developed remain in an excited state and radiate light when the excitation is discharged. This is particularly so at low pressures, when the collision frequency is low the excitation is discharged as light radiation. The extra energy bound to the excited molecule can discharge through impact or molecular dissociation. [Pg.1301]

In the mid 1970s, Ugi and co-workers developed a scheme based on treating reactions by means of matrices - reaction (R-) matrices [16, 17]. The representation of chemical structures by bond and electron (BE-) matrices was presented in Section 2.4. BE-matrices can be constructed not only for single molecules but also for ensembles of them, such as the starting materials of a reaction, e.g., formaldehyde (methanal) and hydrocyanic add as shown with the B E-matrix, B, in Figure 3-12. Figure 3-12 also shows the BE-matrix, E, of the reaction product, the cyanohydrin of formaldehyde. [Pg.185]

When reaction rate equations can be given for the individual steps of a reaction sequence, a detailed modeling of product development over time can be made ... [Pg.553]

However, better use of spectral information for more rapid elucidation of the structure of a reaction product, or of a natural product that has just been isolated, requires the use of computer-assisted structure elucidation (CASE) systems. The CASE systems that exist now are far away from being routinely used by the bench chemist. More work has to go into their development. [Pg.623]

Phosphoric Acid-Based Systems for Cellulosics. Semidurable flame-retardant treatments for cotton (qv) or wood (qv) can be attained by phosphorylation of cellulose, preferably in the presence of a nitrogenous compound. Commercial leach-resistant flame-retardant treatments for wood have been developed based on a reaction product of phosphoric acid with urea—formaldehyde and dicyandiamide resins (59,60). [Pg.476]

Liquid-phase oxidation of lower hydrocarbons has for many years been an important route to acetic acid [64-19-7]. In the United States, butane has been the preferred feedstock, whereas ia Europe naphtha has been used. Formic acid is a coproduct of such processes. Between 0.05 and 0.25 tons of formic acid are produced for every ton of acetic acid. The reaction product is a highly complex mixture, and a number of distillation steps are required to isolate the products and to recycle the iatermediates. The purification of the formic acid requires the use of a2eotropiag agents (24). Siace the early 1980s hydrocarbon oxidation routes to acetic acid have decliaed somewhat ia importance owiag to the development of the rhodium-cataly2ed route from CO and methanol (see Acetic acid). [Pg.504]

Ryton fibers are high performance products developed by Phillips Petroleum Co. by reaction of -dichloroben2ene with sodium sulfide in the presence of a polar solvent according to the following ... [Pg.70]

Iodine is extensively used in a variety of forms as both an antiseptic and a disinfectant. lodophors, usually nonionic surfactants (qv) complexed with iodine, were developed for more readily usable iodine-based antiseptics and disinfectants. These are used as disinfectants in dairies, laboratories, and food processing (qv) plants, and for sanitation of dishes in restaurants. The reaction product of lanolin and iodine shows utiHty as a germicide (149). [Pg.367]

Isocyanates are Hquids or soHds which are highly reactive and undergo addition reactions across the C=N double bond of the NCO group. Reactions with alcohols, carboxyUc acids, and amines have been widely exploited ia developiag a variety of commercial products. Cycloaddition reactions involving both the C=N and the C=0 double bond of the NCO group have been extensively studied and used for product development (1 9). [Pg.446]

The Texaco gasifier and a similar unit developed by The Dow Chemical Company are pressurized entrained gasifiers. At the top pulverized coal is mixed with reaction gas and is blown down into the gasifier. The reaction products leave from the side, and ash is blown down to a water pool where it is quenched. These units have operated at an Eastman Kodak facUity in Kingsport, Tennessee and at the Coolwater power station in California for an integrated combined cycle power plant. [Pg.235]

Urea—Other Aldehyde Reaction Products. Urea can also react with other aldehydes to form slow release nitrogen fertilizers. However, cost constraints associated with higher aldehydes have either precluded or limited broad commercial development of these products. Two exceptions are isobutyhdene diurea (IBDU), registered trademark of Vigoro Industries, and crotonyHdene diurea (CDU), registered trademark of Chisso-Asahi Fertilizer Co. [Pg.132]

The detection of spectral sensitizing action often depends on amplification methods such as photographic or electrophotographic development or, alternatively, on chemical or biochemical detection of reaction products. Separation of the photosensitization reaction from the detection step or the chemical reaction allows selection of the most effective spectral sensitizers. Prime considerations for spectral sensitizing dyes include the range of wavelengths needed for sensitization and the absolute efficiency of the spectrally sensitized process. Because both sensitization wavelength and efficiency are important, optimum sensitizers vary considerably in their stmctures and properties. [Pg.428]

Definition of Dust E losion A dust explosion is the rapid combustion of a dust cloud. In a confined or nearly confined space, the explosion is characterized by relatively rapid development of pressure with a flame propagation and the evolution of large quantities of heat and reaction products. The required oxygen for this combustion is mostly supphed oy the combustion air. The condition necessaiy for a dust explosion is a simultaneous presence of a dust cloud of proper concentration in air that will support combustion and a suitable ignition source. [Pg.2322]

A more general, and for the moment, less detailed description of the progress of chemical reactions, was developed in the transition state theory of kinetics. This approach considers tire reacting molecules at the point of collision to form a complex intermediate molecule before the final products are formed. This molecular species is assumed to be in thermodynamic equilibrium with the reactant species. An equilibrium constant can therefore be described for the activation process, and this, in turn, can be related to a Gibbs energy of activation ... [Pg.47]

A salient feature of the fluidized bed reactor is that it operates at nearly constant temperature and is, therefore, easy to control. Also, there is no opportunity for hot spots (a condition where a small increase in the wall temperature causes the temperature in a certain region of the reactor to increase rapidly, resulting in uncontrollable reactions) to develop as in the case of the fixed bed reactor. However, the fluidized bed is not as flexible as the fixed bed in adding or removing heat. The loss of catalyst due to carryover with the gas stream from the reactor and regenerator may cause problems. In this case, particle attrition reduces their size to such an extent where they are no longer fluidized, but instead flow with the gas stream. If this occurs, cyclone separators placed in the effluent lines from the reactor and the regenerator can recover the fine particles. These cyclones remove the majority of the entrained equilibrium size catalyst particles and smaller fines. The catalyst fines are attrition products caused by... [Pg.234]

It has been reported recently that 17/ -acetoxy-5a,14a-androstan epimerizes at C-14 when photolyzed in cyclohexane solution in the presence of mercuric bromide. When the reaction is carried out in perdeuterated cyclohexane, the product consists of 55 % d - and 12% d2-labeled species. This reaction may develop into an interesting deuteration technique if the incorporated deuterium can be securely assigned to the epimerized position. [Pg.158]

The reaction at any point in the column becomes progressively displaced to the right as fresh complexing agent arrives and the reaction products are removed. The solution of Ln(edta-H) and (NH4)3(edta-H) then reaches the development column where Cu is displaced and Ln redeposited in a compact band at the top of the column ... [Pg.1231]

The competitive method employed for determining relative rates of substitution in homolytic phenylation cannot be applied for methylation because of the high reactivity of the primary reaction products toward free methyl radicals. Szwarc and his co-workers, however, developed a technique for measuring the relative rates of addition of methyl radicals to aromatic and heteroaromatic systems. - In the decomposition of acetyl peroxide in isooctane the most important reaction is the formation of methane by the abstraction of hydrogen atoms from the solvent by methyl radicals. When an aromatic compound is added to this system it competes with the solvent for methyl radicals, Eqs, (28) and (29). Reaction (28) results in a decrease in the amount... [Pg.161]


See other pages where Reaction products developing is mentioned: [Pg.578]    [Pg.159]    [Pg.578]    [Pg.159]    [Pg.872]    [Pg.1828]    [Pg.2061]    [Pg.2925]    [Pg.34]    [Pg.35]    [Pg.230]    [Pg.427]    [Pg.17]    [Pg.292]    [Pg.126]    [Pg.351]    [Pg.463]    [Pg.515]    [Pg.567]    [Pg.289]    [Pg.288]    [Pg.131]    [Pg.134]    [Pg.372]    [Pg.312]    [Pg.24]    [Pg.263]    [Pg.551]    [Pg.466]    [Pg.6]    [Pg.67]    [Pg.223]    [Pg.388]    [Pg.147]    [Pg.794]   
See also in sourсe #XX -- [ Pg.306 ]




SEARCH



Product development

© 2024 chempedia.info