Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction postsynaptic

These cascades of reactions need time in the range of seconds synaptic transmission through GPCRs is slow. All further postsynaptic changes depend on the type of postsynaptic cell. For example activation of 32-adrenoceptors causes in the heart an increase of the rate and force of contraction in skeletal muscle glycogenolysis and tremor in smooth muscle relaxation in bronchial glands secretion and in sympathetic nerve terminals an increase in transmitter release. [Pg.1173]

Once the electrical signal has arrived at a chemical synapse (see Fig 4.2) a cascade of events is triggered with the arrival of an electrical impulse (an action potential), a chemical compound known as a neurotransmitter is released from the presynaptic side into the synaptic cleft. The released neurotransmitter then reaches the membrane of the second cell (postsynaptic membrane) where it interacts with a macromolecule, a so-called receptor. It is this neurotransmitter receptor interaction that triggers another cascade of (chemical) reactions within the second cell and this ultimately leads to the generation of an electrical signal within this cell. This signal then is transferred along this second cell s axon towards another synapse. [Pg.103]

Schematic illustration of the interrelationships between glutamate and NO in synaptic function in the cetebellum. The presynaptic nerve terminal synthesizes, stores, and releases glutamate (G) as the neurotransmitter by exocytosis as illustrated. The glutamate diffu.ses across the synaptic cleft and interacts with postsynaptic NMDA recepti>rs ( ) that are coupled to calcium (Ca ) channels. Ca influx occurs and the free intracellular Ca complexes with calmtxlulin and activates NO synthase. NADPH is also required hir conversion, and the products of the reaction are NO plus L-citrulline. NO diffuses out of the piistsynaptic cell to interact with nearby target cells, one of which is the presynaptic neuron that released the glutamate in the first place. NO stimulates cytosolic guanylate cyclase and cyclic GMP (cGMP) formation presynaptically, hut the consequence of this pre.synaptic modification is unknown. Schematic illustration of the interrelationships between glutamate and NO in synaptic function in the cetebellum. The presynaptic nerve terminal synthesizes, stores, and releases glutamate (G) as the neurotransmitter by exocytosis as illustrated. The glutamate diffu.ses across the synaptic cleft and interacts with postsynaptic NMDA recepti>rs ( ) that are coupled to calcium (Ca ) channels. Ca influx occurs and the free intracellular Ca complexes with calmtxlulin and activates NO synthase. NADPH is also required hir conversion, and the products of the reaction are NO plus L-citrulline. NO diffuses out of the piistsynaptic cell to interact with nearby target cells, one of which is the presynaptic neuron that released the glutamate in the first place. NO stimulates cytosolic guanylate cyclase and cyclic GMP (cGMP) formation presynaptically, hut the consequence of this pre.synaptic modification is unknown.
Metabolites that are less reactive than suicide inhibitors may impact more distant enzymes, within the same cell, adjacent cells, or even in other tissues and organs, far removed from the original site of primary metabolism. For example, organopho-sphates (OPs), an ingredient in many pesticides, are metabolized by hepatic CYPs to intermediates, which, when transported to the nervous system, inhibit esterases that are critical for neural function. Acetylcholinesterase (AChE) catalyzes the hydrolysis of the ester bond in the neurotransmitter, acetylcholine, allowing choline to be recycled by the presynaptic neurons. If AChE is not effectively hydrolyzed by AChE in this manner, it builds up in the synapse and causes hyperexcitation of the postsynaptic receptors. The metabolites of certain insecticides, such as the phos-phorothionates (e.g., parathion and malathion) inhibit AChE-mediated hydrolysis. Phosphorothionates contain a sulfur atom that is double-bonded to the central phosphorus. However, in a CYP-catalyzed desulfuration reaction, the S atom is... [Pg.62]

Thus, a brief puff of chemical neurotransmission from a presynaptic neuron can trigger a profound postsynaptic reaction, which takes hours to days to develop and can last days to weeks or even longer. Every conceivable component of this entire process of chemical neurotransmission is a candidate for modification by drugs. Most psychotropic drugs act on the processes that control chemical neurotransmission at the level of the neurotransmitters themselves or of their enzymes and especially their receptors. Future psychotropic drugs will undoubtedly act directly on the biochemical cascades, particularly on those elements that control the expression of pre- and postsynaptic genes. Also, mental and neurological illnesses are known or suspected to affect these same aspects of chemical neurotransmission. [Pg.19]

The process of information flow between neurons is termed synaptic transmission, and in its most basic form it is characterized by unidirectional communication from the presynaptic to postsynaptic neuron. The process begins with the initiation of an electrical impulse in the axon of the presynaptic neuron. This electrical signal—the action potential—propagates to the axon terminal, which thereby stimulates the fusion of a transmitter-fllled synaptic vesicle with the presynaptic terminal membrane. The process of synaptic vesicle fusion is highly regulated and involves numerous biochemical reactions it culminates in the release of chemical neurotransmitter into the synaptic cleft. The released neurotransmitter diffuses across the cleft and binds to and activates receptors on the postsynaptic site, which thereby completes the process of synaptic transmission. [Pg.1249]

Figure 8 Simplified diagram of a signaling cascade that involves NE, BDNF, and CREB after NE acts on the postsynaptic fi-noradrenergic receptor. NE couples to a G protein (Gas), which stimulates the production of cAMP from adenosine triphosphate (ATP). This reaction is catalyzed by adenylate cyclase (AC). cAMP activates protein kinase A (PKA). Inside the cell, PKA phosphorylates (P) the CREB protein, which binds upstream from specific regions of genes and regulates their expression. BDNF is one target of cAMP signaling pathways in the brain. CRE, cyclic AMP regulatory element ER, endoplasmic reticulum, [reprinted from Reference 76 with permission of the author and the publisher, Canadian Medical Association]. Figure 8 Simplified diagram of a signaling cascade that involves NE, BDNF, and CREB after NE acts on the postsynaptic fi-noradrenergic receptor. NE couples to a G protein (Gas), which stimulates the production of cAMP from adenosine triphosphate (ATP). This reaction is catalyzed by adenylate cyclase (AC). cAMP activates protein kinase A (PKA). Inside the cell, PKA phosphorylates (P) the CREB protein, which binds upstream from specific regions of genes and regulates their expression. BDNF is one target of cAMP signaling pathways in the brain. CRE, cyclic AMP regulatory element ER, endoplasmic reticulum, [reprinted from Reference 76 with permission of the author and the publisher, Canadian Medical Association].

See other pages where Reaction postsynaptic is mentioned: [Pg.516]    [Pg.267]    [Pg.21]    [Pg.87]    [Pg.724]    [Pg.724]    [Pg.60]    [Pg.194]    [Pg.318]    [Pg.100]    [Pg.100]    [Pg.474]    [Pg.241]    [Pg.1864]    [Pg.122]    [Pg.229]    [Pg.42]    [Pg.61]    [Pg.5]    [Pg.49]    [Pg.69]    [Pg.19]    [Pg.166]    [Pg.171]    [Pg.100]    [Pg.104]    [Pg.71]    [Pg.353]    [Pg.516]    [Pg.124]    [Pg.464]    [Pg.468]    [Pg.468]    [Pg.469]    [Pg.469]    [Pg.1883]    [Pg.533]    [Pg.268]    [Pg.548]    [Pg.2725]    [Pg.641]    [Pg.175]   
See also in sourсe #XX -- [ Pg.237 ]




SEARCH



© 2024 chempedia.info