Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanisms experimental study

The primary goal of chemical kinetics is to deduce the mechanism of a reaction from experimental studies of its rate. For this, we have to measure how the rate depends on the concentrations of the reacting species. This chapter lays out the methods and concepts for measuring and interpreting reaction rates and for identifying the mechanism. [Pg.751]

The photochemical isomerization of various spiropyran molecules in different media (gas phase, solution, mono-layers, polymers) has been extensively experimentally [1-3, 20-30] and theoretically [31, 32] studied in order to understand the reaction mechanism. Less studied, however, are the effect of protonation, charge, and external fields on the isomerization pathway of this electrocyclic reaction. It was recently reported that the rate of isomerization of the SP form is considerably increased by protonation of the... [Pg.162]

Kinetic study has been one of the best mechanistic (reaction) tools to establish the most refined reaction mechanisms. In an attempt to establish such a reaction mechanism, kinetic experimental data on the reaction rate are obtained under a set of reaction conditions that could be explained by a kinetic equation derived on the basis of a proposed reaction mechanism. The study is repeated to obtain kinetic data under slightly or totally dilferent reaction conditions, and if these kinetic data fail to fit the kinetic equation derived on the basis of the earlier reaction mechanism, a further refinement in the mechanism is suggested so that the present and earlier kinetic data could be explained mechanistically. A similar approach has been used to provide quantitative or semiquantitative explanations for the micellar effects on reaction rates. Let us now examine the micellar kinetic models developed so far for apparent quantitative explanations of the effects of micelles on reaction rates. [Pg.204]

Using MMd. calculate A H and. V leading to ATT and t his reaction has been the subject of computational studies (Kar, Len/ and Vaughan, 1994) and experimental studies by Akimoto et al, (Akimoto, Sprung, and Pitts. 1972) and by Kapej n et al, (Kapeijn, van der Steen, and Mol, 198.V), Quantum mechanical systems, including the quantum harmonic oscillator, will be treated in more detail in later chapters. [Pg.164]

The many methods used in kinetic studies can be classified in two major approaches. The classical study is based on clarification of the reaction mechanism and derivation of the kinetics from the mechanism. This method, if successful, can supply valuable information, by connecting experimental results to basic information about fundamental steps. During the study of reaction mechanisms many considerations are involved. The first of these is thermodynamics, not only for overall reactions, but also on so-called elementary steps. [Pg.115]

This is an interesting exercise, but we should not become excessively concerned with formal schemes for the identification of the rds. We want to know the rds because it is a piece of information about the reaction mechanism. If we have already acquired so much information about the system that we can construct a reaction coordinate diagram displaying ail intermediates and transition states, we probably have no need to specify the rds. As an example of the experimental detection of the rds we will describe Jencks study of the reaction of hydroxyiamine with acetone. The overall reaction is... [Pg.214]

As is common in heterocyclic chemistry, many studies concern tautomeric equilibria. While quantum chemical calculations are straightforward for the question of the most stable isomer, experiments are sometimes very demanding. Therefore, quantum chemistry can easily provide answers that may require substantial experimental effort. Comparatively few studies concern the investigation of entire reaction paths. This is much more demanding than computing a limited number of tautomers, of course, but usually provides a very detailed picture of the reaction mechanism. In certain cases, it was only possible to judge the nature of a chemical reaction on the basis of quantum chemical calculations. [Pg.85]

The first systematic theoretical study on dihydro-1,2,4-triazines was recently carried out (98JOC5824) the stabilities of all the possible unsubstituted dihydro-1,2,4-triazines were calculated using various theoretical methods, all reliable calculation methods consistently show that the 2,5-dihydro isomer 98 is the most stable. This is in perfect agreement with the experimental observations all the synthetic methods used for the preparation of dihydro-1,2,4-triazines result in 2,5-dihydro isomer 98, provided the structures of the reactants and the reaction mechanism allow its formation. Thus, although Metze and Scherowsky (59CB2481) claimed the formation of 1,2-dihydro-1,2,4-triazine 92 (R = = Ph) in the reduction... [Pg.280]

Because of the complexity of the pathway, the sensitivity of the reagents involved, the heterogeneous nature of the reaction, and the limitations of modern experimental techniques and instrumentation, it is not surprising that a compelling picture of the mechanism of the Simmons-Smith reaction has yet to emerge. In recent years, the application of computational techniques to the study of the mechanism has become important. Enabling theoretical advances, namely the implementation of density functional theory, have finally made this complex system amenable to calculation. These studies not only provide support for earlier conclusions regarding the reaction mechanism, but they have also opened new mechanistic possibilities to view. [Pg.140]

Various investigators have tried to obtain information concerning the reaction mechanism from kinetic studies. However, as is often the case in catalytic studies, the reproducibility of the kinetic measurements proved to be poor. A poor reproducibility can be caused by many factors, including sensitivity of the catalyst to traces of poisons in the reactants and dependence of the catalytic activity on storage conditions, activation procedures, and previous experimental use. Moreover, the activity of the catalyst may not be constant in time because of an induction period or of catalyst decay. Hence, it is often impossible to obtain a catalyst with a constant, reproducible activity and, therefore, kinetic data must be evaluated carefully. [Pg.160]

In this article we critically review most of the literature concerning non-catalyzed, proton-catalyzed and metal-catalyzed polyesterifications. Kinetic data relate both to model esterifications and polyeste-rificatiom. Using our own results we analyze the experimental studies, kinetic results and mechanisms which have been reported until now. In the case of Ti(OBu)f catalyzed reactions we show that most results were obtained under experimental conditions which modify the nature of the catalyst. In fact, the true nature of active sites in the case of metal catalysts remains largely unknown. [Pg.51]

There have been few satisfactory demonstrations that decompositions of hydrides, carbides and nitrides proceed by interface reactions, i.e. either nucleation and growth or contracting volume mechanisms. Kinetic studies have not usually been supplemented by microscopic observations and this approach is not easily applied to carbides, where the product is not volatile. The existence of a sigmoid a—time relation is not, by itself, a proof of the occurrence of a nucleation and growth process since an initial slow, or very slow, process may represent the generation of an active surface, e.g. poison removal, or the production of an equilibrium concentration of adsorbed intermediate. The reactions included below are, therefore, tentative classifications based on kinetic indications of interface-type processes, though in most instances this mechanistic interpretation would benefit from more direct experimental support. [Pg.155]


See other pages where Reaction mechanisms experimental study is mentioned: [Pg.2145]    [Pg.244]    [Pg.193]    [Pg.231]    [Pg.139]    [Pg.255]    [Pg.175]    [Pg.2145]    [Pg.445]    [Pg.245]    [Pg.13]    [Pg.113]    [Pg.389]    [Pg.306]    [Pg.258]    [Pg.307]    [Pg.581]    [Pg.575]    [Pg.70]    [Pg.20]    [Pg.306]    [Pg.36]    [Pg.365]    [Pg.515]    [Pg.221]    [Pg.233]    [Pg.187]    [Pg.76]    [Pg.291]    [Pg.262]    [Pg.230]    [Pg.54]    [Pg.84]    [Pg.471]    [Pg.4]    [Pg.240]    [Pg.265]    [Pg.319]    [Pg.76]   
See also in sourсe #XX -- [ Pg.592 ]




SEARCH



Experimental studies

Mechanical studies

Mechanism study

Reaction mechanisms studies

© 2024 chempedia.info