Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction limiting step

Griskey (5) and Chen 6) studied the reaction of nylon 6,6 and 6,10 in a SPP in a stream of dry nitrogen in the temperature range of 90 - 180°C. They found that the reaction limiting step... [Pg.137]

The physical properties of the iron metal are, therefore, important factors associated with mass transfer limitations of the electron transfer processes and reaction-limiting steps. [Pg.509]

Quantitative analysis has become possible due to technical advances in synthesis of complex molecules with isotopic labels at any one of many specific position and measurements of KIE determined accurately and precisely by mass-spectrometry and radioactive methods. The most informative method for elucidation of the enzyme reaction limiting step and nature of transition-state is the competitive labeled method (Schramm, 1999). This method is based on the use of two labeled preparations of the same substrate, one with the labeled atom at a site expected to experience bonding changes at the TS and a second preparation with a different labeled atom at a site remote from the bond-breaking site. Many molecules of interest can be specifically labeled with radioactive atoms T or I4C and can be incorporated into substrates that also contain stable isotopes D, 15N and 180. [Pg.28]

Along the Y direction, i.e., the surface of the electronic conducting material, the reaction limiting step is mobile ionic reactant (A" ") transport in the product phase (D). No perceptible open circuit emf will be expected over the growth distance, and charged species are driven by the concentration gradient. The growth distance, y, can be expressed as ... [Pg.117]

Process 2, the adsorption of the reactant(s), is often quite rapid for nonporous adsorbents, but not necessarily so it appears to be the rate-limiting step for the water-gas reaction, CO + HjO = CO2 + H2, on Cu(lll) [200]. On the other hand, process 4, the desorption of products, must always be activated at least by Q, the heat of adsorption, and is much more apt to be slow. In fact, because of this expectation, certain seemingly paradoxical situations have arisen. For example, the catalyzed exchange between hydrogen and deuterium on metal surfaces may be quite rapid at temperatures well below room temperature and under circumstances such that the rate of desorption of the product HD appeared to be so slow that the observed reaction should not have been able to occur To be more specific, the originally proposed mechanism, due to Bonhoeffer and Farkas [201], was that of Eq. XVIII-32. That is. [Pg.720]

As with the other surface reactions discussed above, the steps m a catalytic reaction (neglecting diffiision) are as follows the adsorption of reactant molecules or atoms to fomi bound surface species, the reaction of these surface species with gas phase species or other surface species and subsequent product desorption. The global reaction rate is governed by the slowest of these elementary steps, called the rate-detemiming or rate-limiting step. In many cases, it has been found that either the adsorption or desorption steps are rate detemiining. It is not surprising, then, that the surface stmcture of the catalyst, which is a variable that can influence adsorption and desorption rates, can sometimes affect the overall conversion and selectivity. [Pg.938]

An important point about kinetics of cyclic reactions is tliat if an overall reaction proceeds via a sequence of elementary steps in a cycle (e.g., figure C2.7.2), some of tliese steps may be equilibrium limited so tliat tliey can proceed at most to only minute conversions. Nevertlieless, if a step subsequent to one tliat is so limited is characterized by a large enough rate constant, tlien tire equilibrium-limited step may still be fast enough for tire overall cycle to proceed rapidly. Thus, tire step following an equilibrium-limited step in tire cycle pulls tire cycle along—it drains tire intennediate tliat can fonn in only a low concentration because of an equilibrium limitation and allows tire overall reaction (tire cycle) to proceed rapidly. A good catalyst accelerates tire steps tliat most need a boost. [Pg.2700]

M ass Transfer. Mass transfer in a fluidized bed can occur in several ways. Bed-to-surface mass transfer is important in plating appHcations. Transfer from the soHd surface to the gas phase is important in drying, sublimation, and desorption processes. Mass transfer can be the limiting step in a chemical reaction system. In most instances, gas from bubbles, gas voids, or the conveying gas reacts with a soHd reactant or catalyst. In catalytic systems, the surface area of a catalyst can be enormous. Eor Group A particles, surface areas of 5 to over 1000 m /g are possible. [Pg.76]

The overall requirement is 1.0—2.0 s for low energy waste compared to typical design standards of 2.0 s for RCRA ha2ardous waste units. The most important, ie, rate limiting steps are droplet evaporation and chemical reaction. The calculated time requirements for these steps are only approximations and subject to error. For example, formation of a skin on the evaporating droplet may inhibit evaporation compared to the theory, whereas secondary atomization may accelerate it. Errors in estimates of the activation energy can significantly alter the chemical reaction rate constant, and the pre-exponential factor from equation 36 is only approximate. Also, interactions with free-radical species may accelerate the rate of chemical reaction over that estimated solely as a result of thermal excitation therefore, measurements of the time requirements are desirable. [Pg.56]

Electrode kinetics lend themselves to treatment usiag the absolute reaction rate theory or the transition state theory (36,37). In these treatments, the path followed by the reaction proceeds by a route involving an activated complex where the element determining the reaction rate, ie, the rate limiting step, is the dissociation of the activated complex. The general electrode reaction may be described as ... [Pg.511]

Chlorination of Methane. Methane can be chlorinated thermally, photochemicaHy, or catalyticaHy. Thermal chlorination, the most difficult method, may be carried out in the absence of light or catalysts. It is a free-radical chain reaction limited by the presence of oxygen and other free-radical inhibitors. The first step in the reaction is the thermal dissociation of the chlorine molecules for which the activation energy is about 84 kj/mol (20 kcal/mol), which is 33 kJ (8 kcal) higher than for catalytic chlorination. This dissociation occurs sufficiendy rapidly in the 400 to 500°C temperature range. The chlorine atoms react with methane to form hydrogen chloride and a methyl radical. The methyl radical in turn reacts with a chlorine molecule to form methyl chloride and another chlorine atom that can continue the reaction. The methane raw material may be natural gas, coke oven gas, or gas from petroleum refining. [Pg.514]

In reaction engineering, laboratory catal54ic reactors are tools or instruments to study how catalysts behave in some desired reaction. Quantitatively, the investigator wants to know how much of the desired product can be made per unit weight of catalyst, how much raw material will be used, and what byproducts will be made. This is the basic information needed to estimate the costs and profitability of the process. The economic consequence of our estimates also forces us to clarify what the rate limiting steps are, and how much transfer processes influence the rates, i.e., everything that is needed for a secure scale-up. Making the... [Pg.5]

If a sequence of reaction steps consists only of irreversible steps, then all forward rates must be equal. When this occurs, the intermediates or active centers concentrations will adjust themselves to achieve this. The reaction that consumes the active center or intermediate of the highest concentration is the rate limiting step. Even in this case all rates must be equal. One should be cautious when speaking about the slowest rate perhaps the smallest rate constant would be somewhat better. [Pg.119]

For a sequenee of reaetion steps two more eoneepts will be used in kinetics, besides the previous rules for single reaetions. One is the steady-state approximation and the seeond is the rate limiting step eoneept. These two are in strict sense incompatible, yet assumption of both causes little error. Both were explained on Figure 6.1.1 Boudart (1968) credits Kenzi Tamaru with the graphical representation of reaction sequences. Here this will be used quantitatively on a logarithmic scale. [Pg.123]

Remarks The aim here was not the description of the mechanism of the real methanol synthesis, where CO2 may have a significant role. Here we created the simplest mechanistic scheme requiring only that it should represent the known laws of thermodynamics, kinetics in general, and mathematics in exact form without approximations. This was done for the purpose of testing our own skills in kinetic modeling and reactor design on an exact mathematical description of a reaction rate that does not even invoke the rate-limiting step assumption. [Pg.225]

Tubular reactors often offer the greatest potential for inventory reduction. They are usually simple, have no moving parts, and a minimum number of joints and connections that can leak. Mass transfer is often the rate-limiting step in gas-liquid reactions. Novel reactor designs that increase mass transfer can reduce reactor size and may also improve process yields. [Pg.987]

Consider the series reaction A—>B—>C. If the first step is very much slower than the second step, the rate of formation of C is controlled by the rate of the first step, which is called the rate-determining step (rds), or rate-limiting step, of the reaction. Similarly, if the second step is the slower one, the rate of production of C is controlled by the second step. The slower of these two steps is the bottleneck in the overall reaction. This flow analogy, in which the rate constants of the separate steps are analogous to the diameters of necks in a series of funnels, is widely used in illustration of the concept of the rds. [Pg.213]

The rate-limiting step is the reaction AEB—>QEP. It doesn t matter whether A or B binds first to E, or whether Q or P is released first from QEP. Sometimes,... [Pg.449]

Bromination usually follows a two-step mechanism, the rate-limiting step involving formation of an adduct with Br. Calculate energies for Br addition to phenylacetylene and styrene, leading to phenylacetylene+Br+ and styrene+Br+, respectively. (The energy of Br+ is given at right.) Which reaction is more favorable Is this the same preference as seen for Br2 addition ... [Pg.115]

The ratio of products 15 and 16 is dependent on the structures, base, and the solvent. The kinetics of the reaction is likewise dependant on the structures and conditions of the reaction. Thus addition or cyclization can be the rate-determining step. In a particularly noteworthy study by Zimmerman and Ahramjian, it was reported that when both diastereomers of 20 were treated individually with potassium r-butoxide only as-epoxy propionate 21 was isolated. It is postulated that the cyclization is the rate-limiting step. Thus, for these substrates, the retro-aldolization/aldolization step reversible. ... [Pg.17]


See other pages where Reaction limiting step is mentioned: [Pg.40]    [Pg.54]    [Pg.260]    [Pg.31]    [Pg.779]    [Pg.47]    [Pg.40]    [Pg.54]    [Pg.260]    [Pg.31]    [Pg.779]    [Pg.47]    [Pg.1929]    [Pg.1930]    [Pg.18]    [Pg.18]    [Pg.56]    [Pg.80]    [Pg.507]    [Pg.155]    [Pg.221]    [Pg.513]    [Pg.140]    [Pg.522]    [Pg.487]    [Pg.2383]    [Pg.233]    [Pg.24]    [Pg.118]    [Pg.455]    [Pg.450]    [Pg.254]    [Pg.32]    [Pg.30]    [Pg.31]    [Pg.576]    [Pg.833]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Catalytic reaction steps rate-limiting step

Catalytic reactions rate limiting steps

El reaction rate-limiting step

ElcB reaction rate-limiting step

Rate-limiting steps chemical reaction

Rate-limiting steps, in reactions

Reaction constant rate-limiting step and

Reaction limit

Reaction limitation

Reaction mechanisms rate-limiting step approximation

Reaction rate limiting step

Step reactions

© 2024 chempedia.info