Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction hydroxy-hydride

The NAD- and NADP-dependent dehydrogenases catalyze at least six different types of reactions simple hydride transfer, deamination of an amino acid to form an a-keto acid, oxidation of /3-hydroxy acids followed by decarboxylation of the /3-keto acid intermediate, oxidation of aldehydes, reduction of isolated double bonds, and the oxidation of carbon-nitrogen bonds (as with dihydrofolate reductase). [Pg.590]

Photolysis of the matrix with 340-300nm light caused the metal atom-water molecule adduct to react to form the tin hydroxy-hydride molecule, HSnOH. Prolonged photolysis (ca. 60 minutes) of the HSnOH molecule, caused cleavage of the hydrogen bonds to form SnO, which has previously been assigned (11). The reaction product frequencies are listed In Table II. [Pg.361]

Our studies have also shown that water will react spontaneously with some metals or can be caused to react further by photoexcitlng the adduct. Reaction in all cases leads initially to metal insertion into the hydrogen-oxygen bond. This metal hydroxy-hydride will, for certain metals, undergo photolysis to... [Pg.363]

The azidohydrins obtained by azide ion opening of epoxides, except for those possessing a tertiary hydroxy group, can be readily converted to azido mesylates on treatment with pyridine/methanesulfonyl chloride. Reduction and subsequent aziridine formation results upon reaction with hydrazine/ Raney nickel, lithium aluminum hydride, or sodium borohydride/cobalt(II)... [Pg.27]

A total of 3 g (0.13 moles) of sodium hydride is added to a solution consisting of 10 g of 17 -hydroxy-5a-androstan-3-one (36 mmoles) in 200 ml of benzene and 10 ml of ethyl formate. The reaction mixture is allowed to stand under nitrogen for 3 days followed by dropwise addition of 10 ml of methanol to decompose the excess of sodium hydride. The solution is then diluted with 300 ml water and the layers are separated. The basic aqueous solution is extracted with ether to remove neutral material. The aqueous layer is acidified with 80 ml of 3 A hydrochloric acid and the hydroxymethylene steroid is extracted with benzene and ether. The combined organic extracts are washed with water and saturated sodium chloride solution and then dried over magnesium sulfate and concentrated. The residue, a reddish-yellow oil, crystallized from 10 ml of ether to yield 9.12 g (83%) of 17 -hydroxy-2-hydroxymethylene-5a-androstan-3-one mp 162-162.5°. Recrystallization from chloroform-ether gives an analytical sample mp 165-165.5° [a]o 53° (ethanol) 2 ° 252 mjj. (g 11,500), 307 m u (e 5,800). [Pg.95]

A mixture of 3.18 g (10 mmoles) of 17 -hydroxy-2-hydroxymethylene-5a-androstan-3-one, 20 ml dry dimethyl formamide and 0.3 g (13 mmoles) of sodium hydride is stirred for 0.5 hr at room temperature under nitrogen. A total of 1.51 g (12.5 mmoles) of redistilled allyl bromide is added and the mixture is stirred for 1 hr on the steam bath. Aqueous potassium hydroxide (2 g in 5 ml of water) is added and stirring is continued for 1 hr on the steam bath. The reaction mixture is diluted with 50 ml of methylene dichloride followed by careful addition of 300 ml of water. The organic phase is separated and the aqueous phase is again extracted with 50 ml of methylene dichloride. The combined extracts are washed with water, dried over sodium sulfate, filtered and chromatographed on 200 g of silica gel. Elution with pentane-ether (4 1) provides 2a-allyl-17j -hydroxy-5a-androstan-3-one 0.85 g (26%) mp 118-119° [aj 14° (CHCI3), after crystallization from ether-hexane. [Pg.95]

The well-known reduction of carbonyl groups to alcohols has been refined in recent studies to render the reaction more regioselective and more stereoselective Per-fluorodiketones are reduced by lithium aluminum hydride to the corresponding diols, but the use of potassium or sodium borohydride allows isolation of the ketoalcohol Similarly, a perfluoroketo acid fluonde yields diol with lithium aluminum hydnde, but the related hydroxy acid is obtainable with potassium borohydnde [i f] (equations 46 and 47)... [Pg.308]

When a cold (-78 °C) solution of the lithium enolate derived from amide 6 is treated successively with a,/ -unsaturated ester 7 and homogeranyl iodide 8, intermediate 9 is produced in 87% yield (see Scheme 2). All of the carbon atoms that will constitute the complex pentacyclic framework of 1 are introduced in this one-pot operation. After some careful experimentation, a three-step reaction sequence was found to be necessary to accomplish the conversion of both the amide and methyl ester functions to aldehyde groups. Thus, a complete reduction of the methyl ester with diisobutylalu-minum hydride (Dibal-H) furnishes hydroxy amide 10 which is then hydrolyzed with potassium hydroxide in aqueous ethanol. After acidification of the saponification mixture, a 1 1 mixture of diastereomeric 5-lactones 11 is obtained in quantitative yield. Under the harsh conditions required to achieve the hydrolysis of the amide in 10, the stereogenic center bearing the benzyloxypropyl side chain epimerized. Nevertheless, this seemingly unfortunate circumstance is ultimately of no consequence because this carbon will eventually become part of the planar azadiene. [Pg.467]

The intramolecular Michael addition11 of a nucleophilic oxygen to an a,/ -unsaturated ester constitutes an attractive alternative strategy for the synthesis of the pyran nucleus, a strategy that could conceivably be applied to the brevetoxin problem (see Scheme 2). For example, treatment of hydroxy a,/ -unsaturated ester 9 with sodium hydride furnishes an alkoxide ion that induces ring formation by attacking the electrophilic //-carbon of the unsaturated ester moiety. This base-induced intramolecular Michael addition reaction is a reversible process, and it ultimately affords the thermodynamically most stable product 10 (92% yield). [Pg.734]

It is important to emphasize that the hydroxy dithioketal cyclization can be conducted under mild reaction conditions and can be successfully applied to a variety of substrates.15 However, the utility of this method for the synthesis of didehydrooxocane-contain-ing natural products requires the diastereoselective, reductive removal of the ethylthio group. Gratifyingly, treatment of 13 with triphenyltin hydride and a catalytic amount of the radical initiator, azobisisobutyronitrile (AIBN), accomplishes a homolytic cleavage of the C-S bond and furnishes didehydrooxocane 14 in diastereo-merically pure form (95 % yield), after hydrogen atom transfer. [Pg.736]

A convenient route to highly enantiomerically enriched a-alkoxy tributylslannanes 17 involves the enanlioselective reduction of acyl stannanes 16 with chiral reducing agents10. Thus reaction of acyl stannanes with lithium aluminum hydride, chirally modified by (S)-l,l -bi-naphthalene-2,2 -diol, followed by protection of the hydroxy group, lead to the desired a-alkoxy stannanes 17 in optical purities as high as 98 % ee. [Pg.123]


See other pages where Reaction hydroxy-hydride is mentioned: [Pg.1074]    [Pg.264]    [Pg.170]    [Pg.211]    [Pg.348]    [Pg.356]    [Pg.1074]    [Pg.1074]    [Pg.86]    [Pg.960]    [Pg.1101]    [Pg.1414]    [Pg.157]    [Pg.85]    [Pg.247]    [Pg.411]    [Pg.297]    [Pg.192]    [Pg.28]    [Pg.1301]    [Pg.611]    [Pg.73]    [Pg.76]    [Pg.174]    [Pg.383]    [Pg.636]    [Pg.646]    [Pg.666]    [Pg.777]    [Pg.28]    [Pg.151]    [Pg.61]    [Pg.97]    [Pg.259]    [Pg.1202]    [Pg.1232]    [Pg.59]   
See also in sourсe #XX -- [ Pg.348 ]




SEARCH



Hydriding reaction

Hydroxy reaction

Reactions hydrides

© 2024 chempedia.info