Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction, chain, copolymer mechanism

Although the mechanism of copolymerization is similar to that discussed for the polymerization of one reactant (homopolymerization), the reactivities of monomers may differ when more than one is present in the feed, i.e., reaction mixture. Copolymers may be produced by step-reaction or by chain reaction polymerization. It is important to note that if the reactant species are Mi and M2, then the composition of the copolymer is not a physical mixture or blend, though the topic of blends will be dealt with in this chapter. [Pg.207]

It is important to appreciate that polymer produced by an anionic chain-growth mechanism can have drastically different properties from one made by a normal free radical reaction. Block copolymers can be synthesized in which each block has different properties. We mentioned in Chapter 4 that Michael Szwdrc of Syracuse University developed this chemistry in the 1950s. Since that time, block copolymers produced by anionic polymerization have been commercialized, such as styrene-isoprene-styrene and styrene-butadiene-styrene triblock copolymers (e.g., Kraton from Shell Chemical Company). They find use as thermoplastic elastomers (TPE), polymers that act as elastomers at normal temperatures but which can be molded like thermoplastics when heated. We will discuss TPEs further in Chapter 7. [Pg.102]

The process of synthesizing high-molecular-weight copolymers by the polymerization of mixed cyclics is well established and widely used in the silicone industry. However, the microstructure which depends on several reaction parameters is not easily predictable. The way in which the sequences of the siloxane units are built up is directed by the relative reactivities of the monomers and the active chain-ends. In this process the different cyclics are mixed together and copolymerized. The reaction is initiated by basic or acidic catalysts and a stepwise addition polymerization kinetic scheme is followed. Cyclotrisiloxanes are most frequently used in these copolymerizations since the chain growth mechanism dominates the kinetics and redistribution reactions involving the polymer chain are of negligible importance. Several different copolymers may be obtained by this process. They will be monodisperse and free from cyclics and their microstructure can be varied from pure block to pure random copolymers. [Pg.1311]

Synthetic Methods. Water-soluble copolymers are prepared by step-growth or chain-growth mechanisms. Linear or branched systems may be formed from single monomers or from multiple monomers. Distribution of monomers, along the backbone or side chain, can be controlled in a number of ways. In nearly all cases, sequence selection is obtained by carefully controlling monomer reactivity, concentration, addition order, and reaction conditions. Most chain-growth, water-soluble polymers are prepared by classical free radical pol5unerization techniques. [Pg.9166]

In this chapter we deal exclusively with homopolymers. The important case of copolymers formed by the chain mechanism is taken up in the next chapter. The case of copolymerization offers an excellent framework for the comparison of chemical reactivities between different monomer molecules. Accordingly, we defer this topic until Chap. 7, although it is also pertinent to the differences in the homopolymerization reactions of different monomers. [Pg.346]

A mechanism in which the stereochemistry of the growing chain does exert an influence on the addition might exist, but at least two repeat units in the chain are required to define any such stereochemistry. Therefore this possibility is equivalent to the penultimate mechanism in copolymers. In this case the addition would be described in terms of conditional probabilities, just as Eq. (7.49) does for copolymers. Thus the probability of an isotactic triad controlled by the stereochemistry of the growing chain would be represented by the reaction... [Pg.479]

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

Radicals are employed widely in the polymer industry, where their chain-propagating behavior transforms vinyl monomers into polymers and copolymers. The mechanism of addition polymeri2ation involves all three types of reactions discussed above, ie, initiation, propagation by addition to carbon—carbon double bonds, and termination ... [Pg.219]

Chitosan, having a similar chemical backbone as cellulose, is a linear polymer composed of a partially deacety-lated material of chitin [(l-4)-2-acetamide-2-deoxy-/3-D-glucan]. Grafting copolymer chains onto chitosan can improve some properties of the resulting copolymers [48-50]. Yang et al. [16] reported the grafting reaction of chitosan using the Ce(IV) ion as an initiator, but no detailed mechanism of this initiation has been published so far. [Pg.551]

Thus, confirmation of whether the product obtained in an attempted reaction in a true random copolymer is important to clarify the mechanism of the propagation reaction and to correlate structure and reactivity in ring-opening polymerizations. Considering that apparent copolymers may be formed by reactions other than copdymerization, for example, by ionic grafting or by combination of polymer chains, characterization of cross-sequences appears to be one of the best ways to check the formation of random copolymers. [Pg.7]

Amine-terminated siloxane oligomers have also been utilized in the synthesis of various siloxane-amide and siloxane-imide copolymers, High molecular weight siloxane-amide copolymers have been synthesized by the solution or interfacial co-polymerization of siloxane oligomers with sebacoyl chloride or terephthaloyl chloride respectively 1S5,165). In some reactions diamine chain extenders have also been utilized. Thermal and dynamic mechanical characterization of these copolymers have shown the formation of multiphase systems160). Compression molded films displayed very good elastomeric properties. [Pg.33]

Vinyl monomers are often copolymerized, usually with free-radical or coordination metal catalysis, but occasionally by other mechanisms. Random copolymers are important items of commerce. The two monomers are present together in the reaction mixture and copolymerize to give more-or-less random arrangements of the monomers along the pol5aner chain. [Pg.487]


See other pages where Reaction, chain, copolymer mechanism is mentioned: [Pg.127]    [Pg.9]    [Pg.57]    [Pg.235]    [Pg.275]    [Pg.8]    [Pg.230]    [Pg.49]    [Pg.208]    [Pg.139]    [Pg.325]    [Pg.42]    [Pg.43]    [Pg.85]    [Pg.212]    [Pg.178]    [Pg.221]    [Pg.363]    [Pg.471]    [Pg.116]    [Pg.170]    [Pg.64]    [Pg.17]    [Pg.1351]    [Pg.397]    [Pg.239]    [Pg.384]    [Pg.551]    [Pg.222]    [Pg.750]    [Pg.395]    [Pg.451]    [Pg.595]    [Pg.27]    [Pg.52]    [Pg.56]    [Pg.464]    [Pg.869]   
See also in sourсe #XX -- [ Pg.193 , Pg.194 , Pg.206 , Pg.207 , Pg.208 , Pg.209 , Pg.210 , Pg.211 ]




SEARCH



Chain copolymers

Copolymers reactions

Mechanism copolymer

Reaction mechanisms chain reactions

Reaction, chain, copolymer

Reaction, chain, copolymer reactions

© 2024 chempedia.info