Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium acid-base reactions

Several types of reactions are commonly used in analytical procedures, either in preparing samples for analysis or during the analysis itself. The most important of these are precipitation reactions, acid-base reactions, complexation reactions, and oxidation-reduction reactions. In this section we review these reactions and their equilibrium constant expressions. [Pg.139]

The most important types of reactions are precipitation reactions, acid-base reactions, metal-ligand complexation reactions, and redox reactions. In a precipitation reaction two or more soluble species combine to produce an insoluble product called a precipitate. The equilibrium properties of a precipitation reaction are described by a solubility product. [Pg.175]

In this scheme the reversible conversion of A to O is the reaction whose rate is to be studied, whereas the reduction of O to R is the electrode process. Scheme XIV can also represent a pseudo-first-order formation of O. A specific example is the acid-base equilibrium of pyruvic acid, shown in Scheme XV. [Pg.182]

This argument can be extended to consecutive reactions having a rate-determining step. - P The composition of the transition state of the rds is given by the rate equation. This composition includes reactants prior to the rds, but nothing following the rds. Thus, the rate equation may not correspond to the stoichiometric equation. We will consider several examples. In Scheme IV a fast acid-base equilibrium precedes the slow rds. [Pg.216]

An inflection point in a pH-rate profile suggests a change in the nature of the reaction caused by a change in the pH of the medium. The usual reason for this behavior is an acid-base equilibrium of a reactant. Here we consider the simplest such system, in which the substrate is a monobasic acid (or monoacidic base). It is pertinent to consider the mathematical nature of the acid-base equilibrium. Let HS represent a weak acid. (The charge type is irrelevant.) The acid dissociation constant, = [H ][S ]/[HS], is taken to be appropriate to the conditions (temperature, ionic strength, solvent) of the kinetic experiments. The fractions of solute in the conjugate acid and base forms are given by... [Pg.277]

NOj ions/ Addition of water to nitric acid at first diminishes its electrical conductivity by repressing the autoprotolysis reactions mentioned above. For example, at -10° the conductivity decrea.ses from 3.67 x 10 ohm cm to a minimum of 1.08 x 10" ohm" cm at 1.75 molal H2O (82.8% NjOs) before rising again due to the increasing formation of the hydroxonium ion according to the acid-base equilibrium... [Pg.468]

Griess (1864a) had already observed that the diazo compounds obtained from primary aromatic amines in acid solution are converted by alkalis into salts of alkalis. The reaction is reversible. The compounds which Hantzsch (1894) termed sjw-diazotates exhibit apparently the same reactions as the diazonium ions into which they are instantaneously transformed by excess of acid. Clearly the reaction depends on an acid-base equilibrium. [Pg.3]

It is well known that the rates of all azo coupling reactions in aqueous or partly aqueous solutions are highly dependent on acidity. Conant and Peterson (1930) made the first quantitative investigation of this problem. They demonstrated that the rate of coupling of a series of naphtholsulfonic acids is proportional to [OH-] in the range pH 4.50-9.15. They concluded that the substitution proper is preceded by an acid-base equilibrium in one of the two reactants, which was assumed to be the equilibrium between the diazohydroxide and the diazonium ion, in other words, that the reacting equilibrium forms are the undissociated naphthol and the diazohydroxide. [Pg.346]

Does this model give us a practical solution for the synthesis of monosubstitution products in high yields The model teaches us that reactions are not disguised by micromixing if the intrinsic rate constant (in Scheme 12-84 k2o and k2v>) is significantly less than 1 m-1s-1. As discussed in Section 12.7, the intrinsic rate constant refers to unit concentrations of the acid-base equilibrium species involved in the substitution proper, not to analytical concentrations. Therefore, if the azo coupling reaction mentioned above is not carried out within the range of maximal measured rates (i.e., with the equilibria not on the side of the 1-naphthoxide ion and... [Pg.374]

Anionic copolymerization of lactams presents an interesting example of copolymerization. Studies of the copolymerization of a-pyrrolidone and e-caprolactam showed that a-pyrrolidone was several times more reactive than e-caprolactam at 70 °C, but became less reactive at higher temperatures due to depropagation210 2U. By analyzing the elementary reactions Vofsi et al.I27 concluded that transacylation at the chain end occurred faster than propagation and that the copolymer composition was essentially determined by the transacylation equilibrium and the acid-base equilibrium of the monomer anion together with the usual four elementary reactions of the copolymerization. [Pg.18]

C17-0035. Write all the acid-base equilibrium reactions that have major species as reactants for a solution of sodium dihydrogen phosphate, NaH2 PO4. [Pg.1261]

The titration reaction is lSIH3(a ij) -I-H3 0 (a q) NH4 (a q) + H2 0(/) At the stoichiometric point, all the ammonia molecules have been converted to ammonium ions, so the major species present are NH and H2 O. The pH of the solution is thus determined by the acid-base equilibrium of... [Pg.1308]

The arsenous acid-iodate reaction is a combination of the Dushman and Roebuck reactions [145]. These reactions compete for iodine and iodide as intermediate products. A complete mathematical description has to include 14 species in the electrolyte, seven partial differential equations, six algebraic equations for acid-base equilibriums and one linear equation for the local electroneutrality. [Pg.560]

The pKa of a molecule, a charge-state-related parameter, is a descriptor of an acid-base equilibrium reaction [34,35]. Lipophilicity, often represented by the octanol-water partition coefficient Kp is a descriptor of a two-phase distribution equilibrium reaction [36]. So is solubility [37-39]. These three parameters are thermodynamic constants. On the other hand, permeability Pe is a rate coefficient, a kinetics parameter, most often posed in a first-order distribution reaction [40-42]. [Pg.6]

Acid-base equilibrium is very important to inorganic chemical reactions. Adsorption-desorption and precipitation-dissolution reactions are also of major importance in assessing the geochemical fate of deep-well-injected inorganics. Interactions between and among metals in solution and solids in the deep-well environment can be grouped into four types1 2 3 4 ... [Pg.819]

Uncatalyzed amidations of acids have been realized under solvent-free conditions and with a very important microwave effect [67 a]. The best results were obtained by use of a slight excess of either amine or acid (1.5 equiv.). The reaction involves thermolysis of the previously formed ammonium salt (acid-base equilibrium) and is promoted by nucleophilic attack of the amine on the carbonyl moiety of the acid and removal of water at high temperature. The large difference in yields (MW > A) might be a consequence of interaction of the polar TS with the electric field (Eq. (15 a) and Tab. 3.6). [Pg.78]

For cryptands in which the molecular cavity is larger than in the case of the [l.l.l]-species [78], proton transfer in and out of the cavity can be observed more conveniently. Proton transfer from the inside-monoprotonated cryptands [2.1.1] [79], [2.2.1] [80], and [2.2.2] [81 ] to hydroxide ion in aqueous solution has been studied by the pressure-jump technique, using the conductance change accompanying the shift in equilibrium position after a pressure jump to follow the reaction (Cox et al., 1978). The temperature-jump technique has also been used to study the reactions. If an equilibrium, such as that given in equation (80), can be coupled with the faster acid-base equilibrium of an indicator, then proton transfer from the proton cryptate to hydroxide ion... [Pg.189]

Reactions in most functional micelles involve nucleophilic attack by an anionic moiety, e.g. oximate, hydroxamate, thiolate or alkoxide. Therefore it may be necessary to take into account the acid-base equilibrium which generates the anionic moiety. The simplest approach is to work at a pH such that deprotonation is essentially quantitative, but if this cannot be done the extent of deprotonation has to be measured directly or estimated. [Pg.263]

If the profile of the observed or the intrinsic rate constant plotted against pH resembles the profile for an acid-base titration curve, this strongly suggests that one of the reactants is involved in an acid-base equilibrium in that pH range. Such behavior is ftiirly common and is illustrated by the second-order reaction between the Co(II)-trien complex and O2 (Fig. 1.12). The limiting rate constants at the higher and low acidities correspond to the acidic and basic forms of the Co(II) reactant, probably. [Pg.41]

Many of these are substantially non-nucleophilic and unlikely to effect the rate or course of the reaction, although this should always be checked. References 29 to 31 relate some problems in the use of some of these buffers. Occasionally, one of the reactants being used in excess may possess buffer capacity and this obviates the necessity for added buffer. The situation will often arise in the study of complex ion-ligand interactions when either reactant may be involved in an acid-base equilibrium. [Pg.135]

To probe the thermodynamics of amine encapsulation, the binding affinities for different protonated amines for 1 were investigated. By studying the stabilization of the protonated form of encapsulated amines, the feasibility of stabilizing protonated intermediates in chemical reactions could be assessed. The thermodynamic cycle for encapsulation of a hypothetical substrate (S) is shown in Scheme 7.5. The acid-base equilibrium of the substrate is defined by Ki and the binding constant of the protonated substrate in 1 is defined by K2. Previous work has shown that neutral substrates can enter 1 [94] however, the magnitude of this affinity (K4) remains unexplored. Although neutral encapsulated amines were not observable in the study of protonated substrates, the thermodynamic cycle can be completed with K3, which is essentially the acid-base equilibrium inside 1. [Pg.185]

Figure 20.11 Air-water exchange of an organic compound HA undergoing a proton exchange reaction. The conjugate base A cannot leave the water, but it contributes to the diffusive transport across the water-phase boundary layer. 1 = fast acid/base equilibrium (Eq. 8-6), 2 = diffusive transport of HA and A across water-phase boundary layer, 3 = Henry s law equilibrium of HA between water and air, 4 = diffusive transport of HA across air-phase boundary layer. Figure 20.11 Air-water exchange of an organic compound HA undergoing a proton exchange reaction. The conjugate base A cannot leave the water, but it contributes to the diffusive transport across the water-phase boundary layer. 1 = fast acid/base equilibrium (Eq. 8-6), 2 = diffusive transport of HA and A across water-phase boundary layer, 3 = Henry s law equilibrium of HA between water and air, 4 = diffusive transport of HA across air-phase boundary layer.
The relevance of the pH-value was already seen in the chain reaction of ozone, especially in the initiation step. It also plays an important role in all the acid-base equilibrium by influencing the equilibrium concentrations of the dissociated/nondissociated forms. This is especially important for the scavenger reaction with inorganic carbon, which will be discussed further in Section B 4.4.4. [Pg.120]

The key to solving acid-base equilibrium problems is to think about the chemistry—that is, to consider the possible proton-transfer reactions that can take place between Bronsted-Lowry acids and bases. [Pg.628]


See other pages where Equilibrium acid-base reactions is mentioned: [Pg.30]    [Pg.96]    [Pg.115]    [Pg.346]    [Pg.1269]    [Pg.14]    [Pg.147]    [Pg.57]    [Pg.795]    [Pg.175]    [Pg.505]    [Pg.6]    [Pg.172]    [Pg.176]    [Pg.23]    [Pg.217]    [Pg.13]    [Pg.37]    [Pg.93]    [Pg.472]    [Pg.108]    [Pg.420]    [Pg.24]    [Pg.214]    [Pg.127]   


SEARCH



Acid base reactions

Acid-base equilibrium

Acids acid-base equilibrium

Bases acid-base equilibrium

Bases, acid-base reactions

Equilibrium acid-base equilibria

Equilibrium acidity

Equilibrium bases

© 2024 chempedia.info