Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

REACH standard

As more bioassays for assessment of the liquid (porewater, elutriate) and solid (whole sediment) compartments of sediments reach standardization, future investigations will, however, have to determine their performance and adequacy. While the present battery employed in the work presented herein is undeniably useful, it may yet be optimized with other liquid-phase tests and likely be supplemented with direct-contact bioassays capable of estimating the toxic potential of contaminants more closely bound to sediments. [Pg.299]

The normal boiling point of a liquid is defined as the temperature at which the vapor pressure reaches standard atmospheric pressure, 101.325 kPa. The change in boiling point with pressure may be calculated from the representation of the vapor pressure by the Antoine Equation,... [Pg.2339]

As a result, testing for TPMT activity before administering 6MP has been standard practice for some time. If poor TPMT activity is found, only 5-10% of the normal dose allows those patients to reach standard levels of the active components, whereas patients homozygous for the more active enzyme get up to four times the normal dose. Either an enzyme activity assay or a genotyping assay is run on a blood sample prior to dosing,... [Pg.93]

In Europe, the REACH standard form is binding consisting of the following topics ... [Pg.1046]

The accreditation of a standard is an official act (signed by the Ministry of Industry in France). To prepare standards, governments have mandated private organizations which are responsible for continuously following the rules to reach a mciximum consensus. There is only one such organization per country. They are, moreover, grouped at the European and international levels. [Pg.295]

All these organizations have developed numerous working procedures, with very little difference between each other. These procedures seem at first heavy and cumbersome, but following them allows a consensus to be reached. Thus, for example, free access for all to the standardization commissions work is guaranteed, and the existence of lobbies is avoided. [Pg.296]

For sensitivity detection the standard defectometers were used. Relative sensitivity comparison at steel objects radiographic control by radiation with energy of 25 and 45 MeV shows that sensitivity minimum for 45 MeV energy is very displaced towards the big thickness and has not yet reached its minimal meaning at 500mm thickness. [Pg.515]

The sample frequency of the ADC (analogue to digital converter) should be 8 times higher than the test frequency (centre frequency of the spectrum). In dependence of the application, different ADC- boards are used. A standard board (20520) provides 8 bit resolution and up to 100 Msamples/s in single shot mode. For manual tests, up to 400 Msamples/s can be reached in the repetition mode. For scanning systems with high frequencies boards up to 400 Msamples/s (single shot) are available. [Pg.858]

Schemes for classifying surfactants are based upon physical properties or upon functionality. Charge is tire most prevalent physical property used in classifying surfactants. Surfactants are charged or uncharged, ionic or nonionic. Charged surfactants are furtlier classified as to whetlier tire amphipatliic portion is anionic, cationic or zwitterionic. Anotlier physical classification scheme is based upon overall size and molecular weight. Copolymeric nonionic surfactants may reach sizes corresponding to 10 000-20 000 Daltons. Physical state is anotlier important physical property, as surfactants may be obtained as crystalline solids, amoriDhous pastes or liquids under standard conditions. The number of tailgroups in a surfactant has recently become an important parameter. Many surfactants have eitlier one or two hydrocarbon tailgroups, and recent advances in surfactant science include even more complex assemblies [7, 8 and 9]. Schemes for classifying surfactants are based upon physical properties or upon functionality. Charge is tire most prevalent physical property used in classifying surfactants. Surfactants are charged or uncharged, ionic or nonionic. Charged surfactants are furtlier classified as to whetlier tire amphipatliic portion is anionic, cationic or zwitterionic. Anotlier physical classification scheme is based upon overall size and molecular weight. Copolymeric nonionic surfactants may reach sizes corresponding to 10 000-20 000 Daltons. Physical state is anotlier important physical property, as surfactants may be obtained as crystalline solids, amoriDhous pastes or liquids under standard conditions. The number of tailgroups in a surfactant has recently become an important parameter. Many surfactants have eitlier one or two hydrocarbon tailgroups, and recent advances in surfactant science include even more complex assemblies [7, 8 and 9].
The maximum number of latent variables is the smaller of the number of x values or the number of molecules. However, there is an optimum number of latent variables in the model beyond which the predictive ability of the model does not increase. A number of methods have been proposed to decide how many latent variables to use. One approach is to use a cross-validation method, which involves adding successive latent variables. Both leave-one-out and the group-based methods can be applied. As the number of latent variables increases, the cross-validated will first increase and then either reach a plateau or even decrease. Another parameter that can be used to choose the appropriate number of latent variables is the standard deviation of the error of the predictions, SpREss ... [Pg.725]

Several variations of the chemical method are in use. In the one described below, a freshly prepared Fehling s solution is standardised by titrating it directly against a standard solution of pure anhydrous glucose when the end-point is reached, I. e., when the cupric salt in the Fehling s solution is completely reduced to cuprous oxide, the supernatant solution becomes completely decolorised. Some difficulty is often experienced at first in determining the end-point of the reaction, but with practice accurate results can be obtained. The titrations should be performed in daylight whenever possible, unless a Special indicator is used (see under Methylene-blue, p. 463). [Pg.460]

Procedure. Select a volume of sample requiring less than 15 mL of titrant to keep the analysis time under 5 min and, if necessary, dilute the sample to 50 mL with distilled water. Adjust the pH by adding 1-2 mL of a pH 10 buffer containing a small amount of Mg +-EDTA. Add 1-2 drops of indicator, and titrate with a standard solution of EDTA until the red-to-blue end point is reached. [Pg.326]

Usually, 10 to 20 measurements are made of the isotope ratio for one substance. Sometimes, one or more of these measurements appears to be sufficiently different from the mean value that the question arises as to whether or not it should be included in the set at all. Several statistical criteria are available for reaching an objective assessment of the reliability of the apparently rogue result (Figure 48.10). Such odd results are often called outliers, and ignoring them gives a more precise mean value (lower standard deviation). It is not advisable to remove such data more than once in any one set of measurements. [Pg.361]

In discussing Fig. 4.1 we noted that the apparent location of Tg is dependent on the time allowed for the specific volume measurements. Volume contractions occur for a long time below Tg The lower the temperature, the longer it takes to reach an equilibrium volume. It is the equilibrium volume which should be used in the representation summarized by Fig. 4.15. In actual practice, what is often done is to allow a convenient and standardized time between changing the temperature and reading the volume. Instead of directly tackling the rate of collapse of free volume, we shall approach this subject empirically, using a property which we have previously described in terms of free volume, namely, viscosity. [Pg.251]


See other pages where REACH standard is mentioned: [Pg.235]    [Pg.1717]    [Pg.229]    [Pg.708]    [Pg.342]    [Pg.270]    [Pg.3931]    [Pg.259]    [Pg.290]    [Pg.235]    [Pg.1717]    [Pg.229]    [Pg.708]    [Pg.342]    [Pg.270]    [Pg.3931]    [Pg.259]    [Pg.290]    [Pg.444]    [Pg.373]    [Pg.856]    [Pg.887]    [Pg.146]    [Pg.3]    [Pg.273]    [Pg.608]    [Pg.1065]    [Pg.129]    [Pg.328]    [Pg.361]    [Pg.366]    [Pg.411]    [Pg.490]    [Pg.664]    [Pg.91]    [Pg.369]   
See also in sourсe #XX -- [ Pg.342 ]




SEARCH



European Union REACH standard

REACH

Standards REACH standard

© 2024 chempedia.info