Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate constant, sulfur reactions

Alfassi, Z. B S. Padmaja, P. Neta, and R. E. Huie, Rate Constants for Reactions of NO, Radicals with Organic Compounds in Water and Acetonitrile, J. Phys. Chem., 97, 3780-3782 (1993). Allen, H. C., J. M. Laux, R. Vogt, B. J. Finlayson-Pitts, and J. C. Hemminger, Water-Induced Reorganization of Ultrathin Nitrate Films on NaCI—Implications for the Tropospheric Chemistry of Sea Salt Particles, J. Phys. Chem., 100, 6371-6375 (1996). Allen, H. C., D. E. Gragson, and G. L. Richmond, Molecular Structure and Adsorption of Dimethyl Sulfoxide at the Surface of Aqueous Solutions, J. Phys. Chem. B, 103, 660-666 (1999). Anthony, S. E R. T. Tisdale, R. S. Disselkamp, and M. A. Tolbert, FTIR Studies of Low Temperature Sulfuric Acid Aerosols, Geophys. Res. Lett., 22, 1105-1108 (1995). [Pg.175]

Electron Acceptance Reduction and Adduct Formation. Acceptance of electrons at specific sites on amino acids and peptides depends on their reactivities and produces different chemical consequences. Among the sites of particular importance are the terminal amino and carboxyl groups, the ring groups, the peptide carbonyl, and the sulfur bonds. Reactivities of these are reflected in the rate constants for reaction of solvated electrons with individual amino acids in aqueous solutions, as shown in Table I and as discussed by Simic (53). More detailed information, however, regarding the stepwise progression from attachment to specific radical formation has been obtained from low temperature studies. [Pg.131]

The [Rh(NH3)5(OH)] cation, and its chromium(III) analog, react very rapidly with sulfur dioxide in aqueous solution, to give O-sulfito complexes, which lose sulfur dioxide on addition of acid. Rate constants for reaction of the rhodium(III), chromium(III), and cobalt(III) complexes [M(NH3)5(OH)] with sulfur dioxide are 1.8 x 10, 2.9 x 10, and 4.7 x 10 dm mol" s", respectively. This great similarity of rates contrasts with the situation in respect of formation of carbonato complexes, where formation rate constants show a marked dependence on the p a of the aquo form of the hydroxo substrate. [Pg.186]

Nucleophilic reactivity of the sulfur atom has received most attention. When neutral or very acidic medium is used, the nucleophilic reactivity occurs through the exocyclic sulfur atom. Kinetic studies (110) measure this nucleophilicity- towards methyl iodide for various 3-methyl-A-4-thiazoline-2-thiones. Rate constants are 200 times greater for these compounds than for the isomeric 2-(methylthio)thiazole. Thus 3-(2-pyridyl)-A-4-thiazoline-2-thione reacts at sulfur with methyl iodide (111). Methyl substitution on the ring doubles the rate constant. This high reactivity at sulfur means that, even when an amino (112, 113) or imino group (114) occupies the 5-position of the ring, alkylation takes place on sulfiu. For the same reason, 2-acetonyi derivatives are sometimes observed as by-products in the heterocyclization reaction of dithiocarba-mates with a-haloketones (115, 116). [Pg.391]

Extensive research has been conducted on catalysts that promote the methane—sulfur reaction to carbon disulfide. Data are pubhshed for sihca gel (49), alurnina-based materials (50—59), magnesia (60,61), charcoal (62), various metal compounds (63,64), and metal salts, oxides, or sulfides (65—71). Eor a sihca gel catalyst the rate constant for temperatures of 500—700°C and various space velocities is (72)... [Pg.29]

In a study of the kinetics of the reaction of 1-butanol with acetic acid at 0—120°C, an empirical equation was developed that permits estimation of the value of the rate constant with a deviation of 15.3% from the molar ratio of reactants, catalyst concentration, and temperature (30). This study was conducted usiag sulfuric acid as catalyst with a mole ratio of 1-butanol to acetic acid of 3 19.6, and a catalyst concentration of 0—0.14 wt %. [Pg.375]

Continuous esterification of acetic acid in an excess of -butyl alcohol with sulfuric acid catalyst using a four-plate single bubblecap column with reboiler has been studied (55). The rate constant and the theoretical extent of reaction were calculated for each plate, based on plate composition and on the total incoming material to the plate. Good agreement with the analytical data was obtained. [Pg.378]

Effect of Some Nitrogen-, Oxygen-, and Sulfur-Containing Groups on the Rate Constants for the Reaction of Chloro-s-triazine Derivatives with Various Nucleophiles... [Pg.342]

It has been proposed that aromatic solvents, carbon disulfide, and sulfur dioxide form a complex with atomic chlorine and that this substantially modifies both its overall reactivity and the specificity of its reactions.126 For example, in reactions of Cl with aliphatic hydrocarbons, there is a dramatic increase in Ihe specificity for abstraction of tertiary or secondary over primary hydrogens in benzene as opposed to aliphatic solvents. At the same time, the overall rate constant for abstraction is reduced by up to two orders of magnitude in the aromatic solvent.1"6 The exact nature of the complex responsible for this effect, whether a ji-coinplex (24) or a chlorocyclohexadienyl radical (25), is not yet resolved.126- 22... [Pg.34]

The first step consists in the attack of a proton on the W-H bond to yield a labile dihydrogen intermediate (Eq. (3)) that rapidly releases H2 to form a coordi-natively unsaturated complex (Eq. (4)). This complex adds water in the next step to form an aqua complex (Eq. (5)) that completes the reaction by substituting the coordinated water by the X anion (Eq. (6)). Steps (3)-(6) are repeated for each W-H bond and the factor of 3 in the rate constants appears as a consequence of the statistical kinetics at the three metal centers. The rate constants for both the initial attack by the acid (ki) and water attack to the coordinatively unsaturated intermediate (k2) are faster in the sulfur complex, whereas the substitution of coordinated water (k3) is faster for the selenium compound. [Pg.113]

Due to the high rate of reaction observed by Meissner and coworkers it is unlikely that the reaction of OH with DMSO is a direct abstraction of a hydrogen atom. Gilbert and colleagues proposed a sequence of four reactions (equations 20-23) to explain the formation of both CH3 and CH3S02 radicals in the reaction of OH radicals with aqueous DMSO. The reaction mechanism started with addition of OH radical to the sulfur atom [they revised the rate constant of Meissner and coworkers to 7 X 10 M s according to a revision in the hexacyanoferrate(II) standard]. The S atom in sulfoxides is known to be at the center of a pyramidal structure with the free electron pair pointing toward one of the corners which provides an easy access for the electrophilic OH radical. [Pg.899]

If the intermediate compound XZ is very unstable, Z cannot serve as a catalyst, while if it is very stable then the reaction stops. The intermediate compound XZ must have the right degree of stability for the catalyst to be effective. It must be borne in mind that the catalyst will accelerate the forward as well as the reverse reactions to the same extent, so that the ratio of the specific rate constants for the forward (kf) the backward (kb) reactions will not be affected. As an example a gaseous reaction between sulfur dioxide and oxygen to yield sulfur trioxide may be considered. The reaction, which can be represented by the equation... [Pg.338]

N-nitro amines, RNHN02, decompose to alcohols and nitrous oxide in strong acid media. Rate constants obtained for R = methyl in sulfuric acid222 224 are illustrated as excess acidity plots in Fig. 12.119 This shows multiple curvature, but analysis according to equation (59) shows that one water molecule is involved in the reaction up to about 80 wt% H2S04, and one bisulfate ion above this point, see Fig. 13. The proposed mechanism is shown in Scheme 2. 19... [Pg.39]

Not every excess acidity mechanistic analysis has been an outstanding success. For instance, several enolization studies have used this technique. The enolization of acetophenone was one of the reactions originally studied by Zucker and Hammett 146 their sulfuric acid rate constant data, obtained by iodine scavenging (the reaction is zero-order in halogen), was used in an excess acidity analysis,242 together with additional results obtained for some substituted acetophenones (using bromine scavenging).243... [Pg.43]


See other pages where Rate constant, sulfur reactions is mentioned: [Pg.370]    [Pg.184]    [Pg.119]    [Pg.239]    [Pg.362]    [Pg.32]    [Pg.148]    [Pg.48]    [Pg.496]    [Pg.603]    [Pg.128]    [Pg.546]    [Pg.270]    [Pg.284]    [Pg.22]    [Pg.210]    [Pg.541]    [Pg.459]    [Pg.254]    [Pg.634]    [Pg.899]    [Pg.1097]    [Pg.1098]    [Pg.1102]    [Pg.13]    [Pg.183]    [Pg.1098]    [Pg.1102]    [Pg.150]    [Pg.141]    [Pg.29]    [Pg.56]   
See also in sourсe #XX -- [ Pg.236 , Pg.237 ]

See also in sourсe #XX -- [ Pg.236 , Pg.237 ]




SEARCH



Reaction rate constant

Sulfur reaction rate

© 2024 chempedia.info