Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rare earth copper oxides

With the hope that there exist copper oxide compounds with higher Tc, we have undertaken an extensive matrix experiment, in which composition and processing conditions were varied for a wide variety of rare earth-alkaline earth-copper-oxide combinations. Most of the higher Tc, reports have involved Y-Ba-Cu-O compositions, and so this system received the major portion of our attention. We also examined other isoelectronic elements such as Sc, La, and Lu substituting for Y and, to a lesser extent, Sr for Ba. Binary rare earth-... [Pg.90]

The relatively high cost and lack of domestic supply of noble metals has spurred considerable efforts toward the development of nonnoble metal catalysts for automobile exhaust control. A very large number of base metal oxides and mixtures of oxides have been considered, especially the transition metals, such as copper, chromium, nickel, manganese, cobalt vanadium, and iron. Particularly prominent are the copper chromites, which are mixtures of the oxides of copper and chromium, with various promoters added. These materials are active in the oxidation of CO and hydrocarbons, as well as in the reduction of NO in the presence of CO (55-59). Rare earth oxides, such as lanthanum cobaltate and lanthanum lead manganite with Perovskite structure, have been investigated for CO oxidation, but have not been tested and shown to be sufficiently active under realistic and demanding conditions (60-63). Hopcalities are out-... [Pg.79]

The raw materials needed to supply about ten million new automobiles a year do not impose a difficult problem except in the case of the noble metals. Present technology indicates that each car may need up to ten pounds of pellets, two pounds of monoliths, or two pounds of metal alloys. The refractory oxide support materials are usually a mixture of silica, alumina, magnesia, lithium oxide, and zirconium oxide. Fifty thousand tons of such materials a year do not raise serious problems (47). The base metal oxides requirement per car may be 0.1 to 1 lb per car, or up to five thousand tons a year. The current U.S. annual consumption of copper, manganese, and chromium is above a million tons per year, and the consumption of nickel and tungsten above a hundred thousand tons per year. The only important metals used at the low rate of five thousand tons per year are cobalt, vanadium, and the rare earths. [Pg.81]

One of the most exciting developments in materials science in recent years involves mixed oxides containing rare earth metals. Some of these compounds are superconductors, as described in our Chemistry and Technology Box. Below a certain temperature, a superconductor can carry an immense electrical current without losses from resistance. Before 1986, it was thought that this property was limited to a few metals at temperatures below 25 K. Then it was found that a mixed oxide of lanthanum, barium, and copper showed superconductivity at around 30 K, and since then the temperature threshold for superconductivity has been advanced to 135 K. [Pg.782]

Shell Deacon An improved version of the Deacon process for oxidizing hydrogen chloride to chlorine, using a catalyst containing the mixed chlorides of copper, potassium, and rare earths. Formerly operated in The Netherlands and still in operation in India. [Pg.242]

Trace metals, such as copper, nickel, cobalt, zinc, and various rare earth elements, tend to coprecipitate with or adsorb onto Fe-Mn oxides. As shown in Table 18.1, this causes these elements to be highly enriched in the hydrogenous deposits as compared to their concentrations in seawater. The degree of enrichment is dependent on various environmental factors, such as the redox history of the underlying sediments and hydrothermal activity. This makes the composition of the oxides geographically variable. [Pg.443]

Of the important properties of glass, color is one of the most interesting. Color is usually achieved by the addition of various metal oxides. The strongest of these are titanium, vanadium, chromium, manganese, selenium, iron, cobalt, nickel and copper. Silver and uranium will give weak colors. Some of the rare earths are also used as colorants with sharp absorption bands in contrast to the broad bands given by most colorants. (4)... [Pg.82]

For the synthesis of materials, the reactants are placed in the copper crucible. An arc is struck by allowing the cathode to touch the anode. The current is raised slowly while the cathode is simultaneously withdrawn so as to maintain the arc. The arc is then positioned so that it bathes the sample in the crucible. The current is increased until the reactants melt When the arc is turned off, the product solidifies in the form of a button. Because of the enormous temperature gradient between the melt and the water-cooled crucible, a thin solid layer of the sample usually separates the melt from the copper hearth in this sense, the sample forms its own crucible and hence contamination with copper does not take place. Contamination of the sample by tungsten vaporizing from the cathode can be avoided by using water-cooled cathodes. The arc method has been successfully used for the synthesis of various oxides of Ti, V and Nb. A number of lower-valence rare-earth oxides, LnO, 5 have been prepared by arc fusion of LnjOj... [Pg.144]

Among the commonly observed spectral overlap problems due to molecular oxide and molecular hydroxide ions are those due to TiO+ (with 5 isotopes of Ti from mass 46 to 50) that result in overlaps with a minor isotope of nickel, 62Ni+ both isotopes of copper, 63Cu+ and 65Cu + and the two major isotopes of zinc, MZn+ and 66Zn+. Calcium oxide and hydroxide ions overlap with all five isotopes of nickel, both isotopes of zinc, and three of the four isotopes of iron. The analysis of rare earth elements is particularly complicated by molecular oxide and hydroxide ion spectral overlaps [141,142]. [Pg.106]

Low-pressure methanol synthesis relies almost exclusively on catalysts based on copper, zinc oxide, and alumina. The catalysts are produced by ICI (now Johnson Matthay), Siidchemie (now Clariant), Haldor Topsoe, in the past also by BASF, and other chemical enterprises and contain 50-70 atomic % CuO, 20%-50% ZnO, and 5%-20% Al203. Instead of alumina, chromium oxide and rare earth oxides have also been used. The mixed oxide catalysts are usually shipped as 4-6 mm cylindrical pellets with specific surface area of 60-100 m2/g. The catalysts are activated in situ with dilute hydrogen, often derived from off-gases from synthesis gas... [Pg.418]

Complex oxides of the perovskite structure containing rare earths like lanthanum have proved effective for oxidation of CO and hydrocarbons and for the decomposition of nitrogen oxides. These catalysts are cheaper alternatives than noble metals like platinum and rhodium which are used in automotive catalytic converters. The most effective catalysts are systems of the type Lai vSrvM03, where M = cobalt, manganese, iron, chromium, copper. Further, perovskites used as active phases in catalytic converters have to be stabilized on the rare earth containing washcoat layers. This then leads to an increase in rare earth content of a catalytic converter unit by factors up to ten compared to the three way catalyst. [Pg.906]


See other pages where Rare earth copper oxides is mentioned: [Pg.18]    [Pg.282]    [Pg.316]    [Pg.393]    [Pg.18]    [Pg.282]    [Pg.316]    [Pg.393]    [Pg.129]    [Pg.613]    [Pg.379]    [Pg.281]    [Pg.295]    [Pg.247]    [Pg.2]    [Pg.232]    [Pg.289]    [Pg.933]    [Pg.322]    [Pg.482]    [Pg.609]    [Pg.579]    [Pg.31]    [Pg.964]    [Pg.319]    [Pg.1277]    [Pg.1457]    [Pg.1579]    [Pg.97]    [Pg.213]    [Pg.11]    [Pg.964]    [Pg.178]    [Pg.6]    [Pg.30]    [Pg.296]    [Pg.364]    [Pg.403]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Copper oxidized

Earth copper

Earth oxidation

Oxidants copper

Oxidative coppering

Oxidic copper

Rare earth oxides

Rare oxides

© 2024 chempedia.info