Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raman spectroscopy pulse-probe

Time-resolved spectroscopy has become an important field from x-rays to the far-IR. Both IR and Raman spectroscopies have been adapted to time-resolved studies. There have been a large number of studies using time-resolved Raman [39], time-resolved resonance Raman [7] and higher order two-dimensional Raman spectroscopy (which can provide coupling infonuation analogous to two-dimensional NMR studies) [40]. Time-resolved IR has probed neutrals and ions in solution [41, 42], gas phase kmetics [42] and vibrational dynamics of molecules chemisorbed and physisorbed to surfaces [44]- Since vibrational frequencies are very sensitive to the chemical enviromnent, pump-probe studies with IR probe pulses allow stmctiiral changes to... [Pg.1172]

The pump pulse energy is controlled to minimize two-photon phenomena and to maximize the concentration of the desired excited-state or other reactive intermediate. The optimal average power of the probe pulse changes with a specific experiment but is often maintained at 10 mW peak powers in the range of 0.1-10 MW with repetition rates of 1 kHz-1 MHZ are best for picosecond spontaneous Raman spectroscopy. [Pg.882]

The experimental setup for time-resolved Raman spectroscopy was based on a 1 kHz Ti sapphire regenerative amplifier system. We used the third harmonic of the output as the pump pulse to generate solvated electrons. The fundamental pulse or the output of a H2 Raman shifter was used to probe Raman scattering. The Raman scattering was analyzed by... [Pg.225]

This chapter describes the application of these techniques to a liquid photolytic reaction. The motivation was the assessment of the capabilities and limitations of single-pulse nonlinear Raman spectroscopy as a probe of fast reactions in energetic materials. [Pg.319]

In impulsive multidimensional (1VD) Raman spectroscopy a sample is excited by a train of N pairs of optical pulses, which prepare a wavepacket of quantum states. This wavepacket is probed by the scattering of the probe pulse. The electronically off-resonant pulses interact with the electronic polarizability, which depends parametrically on the vibrational coordinates (19), and the signal is related to the 2N + I order nonlinear response (18). Seventh-order three-dimensional (3D) coherent Raman scattering, technique has been proposed by Loring and Mukamel (20) and reported in Refs. 12 and 21. Fifth-order two-dimensional (2D) Raman spectroscopy, proposed later by Tanimura and Mukamel (22), had triggered extensive experimental (23-28) and theoretical (13,25,29-38) activity. Raman techniques have been reviewed recently (12,13) and will not be discussed here. [Pg.362]

The active site on the surface of selective propylene anmioxidation catalyst contains three critical functionalities associated with the specific metal components of the catalyst (37—39) an CC-H abstraction component such as Bi3+, Sb3+, or Te4+ an olefin chemisorption and oxygen or nitrogen insertion component such as Mo6+ or Sb5+ and a redox couple such as Fe2+/Fe3+ or Ce3+/ Ce4+ to enhance transfer of lattice oxygen between the bulk and surface of the catalyst. The surface and solid-state mechanisms of propylene ammoxidation catalysis have been determined using Raman spectroscopy (40,41), neutron diffraction (42—44), x-ray absorption spectroscopy (45,46), x-ray diffraction (47—49), pulse kinetic studies (36), and probe molecule investigations (50). [Pg.183]

Transient intermediates are most commonly observed by their absorption (transient absorption spectroscopy see ref. 185 for a compilation of absorption spectra of transient species). Various other methods for creating detectable amounts of reactive intermediates such as stopped flow, pulse radiolysis, temperature or pressure jump have been invented and novel, more informative, techniques for the detection and identification of reactive intermediates have been added, in particular EPR, IR and Raman spectroscopy (Section 3.8), mass spectrometry, electron microscopy and X-ray diffraction. The technique used for detection need not be fast, provided that the time of signal creation can be determined accurately (see Section 3.7.3). For example, the separation of ions in a mass spectrometer (time of flight) or electrons in an electron microscope may require microseconds or longer. Nevertheless, femtosecond time resolution has been achieved,186 187 because the ions or electrons are formed by a pulse of femtosecond duration (1 fs = 10 15 s). Several reports with recommended procedures for nanosecond flash photolysis,137,188-191 ultrafast electron diffraction and microscopy,192 crystallography193 and pump probe absorption spectroscopy194,195 are available and a general treatise on ultrafast intense laser chemistry is in preparation by IUPAC. [Pg.94]

In picosecond time-resolved Raman spectroscopy, the sample is pumped and probed by energetically well-defined optical pulses, producing a full vibrational spectrum over a 1000 2000 cm 1 window.207 One would expect vibrational spectroscopy to be restricted to the picosecond time domain and above by the Heisenberg uncertainty principle (Equation 2.1), because a 1 ps transform-limited pulse has an energy width of... [Pg.109]

Time-resolved resonance Raman spectroscopy of 25 in 50% aqueous CH3CN proved that the final product 26 appears with a rate constant of 2.1 x 109 s 1 following pulsed excitation of 25.207 The appearance of 26 was slightly delayed with respect to the decay of (25), A = 3.0 x 109s, that was determined independently by optical pump probe spectroscopy in the same solvent. The intermediate that is responsible for the delayed appearance of 26, t 0.5 ns, is attributed to the triplet biradical 327.462 It shows weak, but characteristic, absorption bands at 445 and 420 nm, similar to those of the phenoxy radical. ISC is presumably rate limiting for the decay of 327, which cyclizes to the spiro-dienone 28. The intermediate 28 is not detectable its decay must be faster than its rate of formation under the reaction conditions. Decarbonylation of 28 to form p-quinone methide (29) competes with hydrolysis to 26 at low water concentrations. Hydrolysis of 29 then yields p-hydroxybenzyl alcohol (30) as the final product. [Pg.217]

The most widely used vibrational spectroscopic technique is time-resolved resonance Raman spectroscopy (TR ) [65]. This has been used successfully to obtain structural information about organic excited states in SCCO2. McGar-vey and co-workers probed the excited triplet state of anthracene in SCCO2 [66]. However, TR experiments involve data collection over many laser pulses, with all of the problems associated with secondary photolysis. These problems have prevented TR being used effectively to follow chemical reactions apart from highly photoreversible processes. To our knowledge, TR has not yet been used to follow chemical reactions in SCFs. Recently, however. [Pg.156]

As noted earlier, fused silica optical fiber is used for remote NIR measurements. The same type of fiber optic probe can be used for Raman spectroscopy, and enables remote measurement of samples and online process measurements. In situ reaction monitoring by Raman spectroscopy has been used to study catalytic hydrogenation, emulsion polymerization, and reaction mechanisms. Remote sensing of molecules in the atmosphere can be performed by Raman scattering measurements using pulsed lasers. [Pg.301]

Fig. 2 Experimental arrangement for time-resolved FSRS (femtosecond stimulated raman spectroscopy). The femtosecond actinic pump pulse excites the sample electronically. After a delay the femtosecond probe pulse and picosecond Raman pump pulse arrive together to interrogate the instantaneous molecular structure. The self-heterodyned signal is emitted in the probe direction, dispersed, and detected by a kHz readout CCD. Data collection is best performed by division of subsequent Raman pump-on by Raman pump-off laser shots (lower trace), however this has been performed by other groups as a subtraction of subsequent pulses (upper trace). Reproduced from ref 2 with permission from the PCCP Owner Societies (2012). Fig. 2 Experimental arrangement for time-resolved FSRS (femtosecond stimulated raman spectroscopy). The femtosecond actinic pump pulse excites the sample electronically. After a delay the femtosecond probe pulse and picosecond Raman pump pulse arrive together to interrogate the instantaneous molecular structure. The self-heterodyned signal is emitted in the probe direction, dispersed, and detected by a kHz readout CCD. Data collection is best performed by division of subsequent Raman pump-on by Raman pump-off laser shots (lower trace), however this has been performed by other groups as a subtraction of subsequent pulses (upper trace). Reproduced from ref 2 with permission from the PCCP Owner Societies (2012).

See other pages where Raman spectroscopy pulse-probe is mentioned: [Pg.125]    [Pg.183]    [Pg.146]    [Pg.358]    [Pg.183]    [Pg.16]    [Pg.176]    [Pg.37]    [Pg.343]    [Pg.276]    [Pg.34]    [Pg.894]    [Pg.553]    [Pg.82]    [Pg.449]    [Pg.484]    [Pg.486]    [Pg.3]    [Pg.183]    [Pg.6]    [Pg.240]    [Pg.630]    [Pg.373]    [Pg.110]    [Pg.400]    [Pg.173]    [Pg.332]    [Pg.24]    [Pg.1989]    [Pg.553]    [Pg.469]    [Pg.818]    [Pg.81]    [Pg.288]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Probe pulse

Spectroscopy probes

© 2024 chempedia.info