Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raman spectroscopy, picosecond systems

The use of picosecond pulses to minimize the Interference of fluorescence with the Raman spectrum was also demonstrated (5) at about that time. The use of vldicon detection in Raman spectroscopy was demonstrated (6) in 1976. The first resonance Raman spectrum taken for a photobiologlcal system (bacteriorhodopsin) in the nanosecond time scale was (7) in 1977. The resonance Raman spectra of bacteriorhodopsin have also been measured in the microsecond (8,9,10) and in the millisecond (11) time domain. Recently the time resolved resonance Raman spectra of photolyzed hemoglobin derivatives have been reported (12). [Pg.215]

Picosecond spectroscopy provides a means of studying ultrafast events which occur in physical, chemical, and biological processes. Several types of laser systems are currently available which possess time resolution ranging from less than one picosecond to several picoseconds. These systems can be used to observe transient states and species involved in a reaction and to measure their formation and decay kinetics by means of picosecond absorption, emission and Raman spectroscopy. Technological advances in lasers and optical detection systems have permitted an increasing number of photochemical reactions to be studied in. greater detail than was previously possible. Several recent reviews (1-4) have been written which describe these picosecond laser systems and several applications of them... [Pg.201]

MV2+ acceptors and SCN electron donors in solution [43], Colloidal semiconductor particles, typically of ca. 10-100 nm diameter, in aqueous sols may be treated as isolated microelectrode systems. Steady-state RRS experiments with c.w. lasers can be used to study phototransients produced at the surfaces of such colloidal semiconductors in flow systems [44], but pulsed laser systems coupled with multichannel detectors are far more versatile. Indeed, a recent TR3S study of methyl viologen reduction on the surface of photoex-cited colloidal CdS crystallites has shown important differences in mechanism between reactions occurring on the nanosecond time scale and those observed with picosecond Raman lasers [45]. Thus, it is apparent that Raman spectroscopy may now be used to study very fast interface kinetics as well as providing sensitive information on chemical structure and bonding in molecular species at electrode surfaces. [Pg.103]

The conditions which determine whether flash photolysis can be used to smdy a given chemical system are (i) a precursor of the species of kinetic interest has to absorb light (normally from a pulsed laser) (ii) this species is produced on a timescale that is short relative to its lifetime in the system. Current technical developments make it easy to study timescales of nanoseconds for production and analysis of species, and the use of instrumentation with time resolution of picoseconds is already fairly common. In certain specific cases, as we will see in the last part of this chapter, it is possible to study processes on timescales greater than a few femtoseconds. Once the species of interest has been produced, it is necessary to use an appropriate rapid detection method. The most common technique involves transient optical absorption spectroscopy. In addition, luminescence has been frequently used to detect transients, and other methods such as time-resolved resonance Raman spectroscopy and electrical conductivity have provided valuable information in certain cases. [Pg.62]

Since there are a large number of different experimental laser and detection systems that can be used for time-resolved resonance Raman experiments, we shall only focus our attention here on two common types of methods that are typically used to investigate chemical reactions. We shall first describe typical nanosecond TR spectroscopy instrumentation that can obtain spectra of intermediates from several nanoseconds to millisecond time scales by employing electronic control of the pnmp and probe laser systems to vary the time-delay between the pnmp and probe pnlses. We then describe typical ultrafast TR spectroscopy instrumentation that can be used to examine intermediates from the picosecond to several nanosecond time scales by controlling the optical path length difference between the pump and probe laser pulses. In some reaction systems, it is useful to utilize both types of laser systems to study the chemical reaction and intermediates of interest from the picosecond to the microsecond or millisecond time-scales. [Pg.129]


See other pages where Raman spectroscopy, picosecond systems is mentioned: [Pg.175]    [Pg.176]    [Pg.23]    [Pg.369]    [Pg.146]    [Pg.140]    [Pg.883]    [Pg.894]    [Pg.215]    [Pg.3]    [Pg.3808]    [Pg.630]    [Pg.400]    [Pg.200]    [Pg.570]    [Pg.3807]    [Pg.818]    [Pg.133]    [Pg.266]    [Pg.610]    [Pg.144]    [Pg.169]    [Pg.5]    [Pg.25]    [Pg.459]    [Pg.121]    [Pg.627]    [Pg.169]    [Pg.69]    [Pg.245]   
See also in sourсe #XX -- [ Pg.881 ]




SEARCH



Picosecond

Raman System

Raman spectroscopy system

Spectroscopy systems

© 2024 chempedia.info