Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radon elements

The relativistic coupled cluster method starts from the four-component solutions of the Drrac-Fock or Dirac-Fock-Breit equations, and correlates them by the coupled-cluster approach. The Fock-space coupled-cluster method yields atomic transition energies in good agreement (usually better than 0.1 eV) with known experimental values. This is demonstrated here by the electron affinities of group-13 atoms. Properties of superheavy atoms which are not known experimentally can be predicted. Here we show that the rare gas eka-radon (element 118) will have a positive electron affinity. One-, two-, and four-components methods are described and applied to several states of CdH and its ions. Methods for calculating properties other than energy are discussed, and the electric field gradients of Cl, Br, and I, required to extract nuclear quadrupoles from experimental data, are calculated. [Pg.161]

Radon, element 86, is the densest noble gas. All of its isotopes are radioactive. Radon-222 has the longest half-life, 3.823 days. Radon is formed in uranium deposits in Earth s crust. Because it is a gas, it can seep through the rocks and soil to the surface. [Pg.777]

Thus, the structures of the elements above radon (element 86) through uranium were written to show the addition of the next two electrons in the 7s shell for element 87 (francium) and element 88 (radium) and addition in the 6d shell for actinium, thorium, protactinium and uranium (Latimer and Hildebrand 1940 Richtmeyer and Kennard 1942 Taylor and Glasstone 1942). [Pg.3]

In addition to the electronic structure of radon (element number 86). [Pg.19]

At first, in order to use some standard results from the theory of the Radon transform, we restrict the analysis to 2-D tensor fields whose elements belong to either the space of rapidly decreasing C° functions or the space of compactly supported C°° functions. Thus, some of the detailed issues associated with the boundary conditions are avoided. [Pg.132]

From radium called niton at first, L. nitens, shining) The element was discovered in 1900 by Dorn, who called it radium emanation. In 1908 Ramsay and Gray, who named it niton, isolated the element and determined its density, finding it to be the heaviest known gas. It is essentially inert and occupies the last place in the zero group of gases in the Periodic Table. Since 1923, it has been called radon. [Pg.152]

Care must be taken in handling radon, as with other radioactive materials. The main hazard is from inhalation of the element and its solid daughters which are collected on dust in the air. Good ventilation should be provided where radium, thorium, or actinium is stored to prevent build-up of the element. Radon build-up is a health consideration in uranium mines. Recently radon build-up in homes has been a concern. Many deaths from lung cancer are caused by radon exposure. In the U.S. it is recommended that remedial action be taken if the air in homes exceeds 4 pCi/1. [Pg.153]

Noble gases (Section 1 1) The elements in group VIIIA of the penodic table (helium neon argon krypton xenon radon)... [Pg.1289]

Argon-40 [7440-37-1] is created by the decay of potassium-40. The various isotopes of radon, all having short half-Hves, are formed by the radioactive decay of radium, actinium, and thorium. Krypton and xenon are products of uranium and plutonium fission, and appreciable quantities of both are evolved during the reprocessing of spent fuel elements from nuclear reactors (qv) (see Radioactive tracers). [Pg.4]

Pure Elements. AH of the hehum-group elements are colorless, odorless, and tasteless gases at ambient temperature and atmospheric pressure. Chemically, they are nearly inert. A few stable chemical compounds are formed by radon, xenon, and krypton, but none has been reported for neon and belium (see Helium GROUP, compounds). The hehum-group elements are monoatomic and are considered to have perfect spherical symmetry. Because of the theoretical interest generated by this atomic simplicity, the physical properties of ah. the hehum-group elements except radon have been weU studied. [Pg.5]

Radon is the heaviest of the hehum-group elements and the heaviest of the normal gaseous elements. It is strongly radioactive. The most common isotope, Rn, has a half-life of 3.825 days (49). Radon s scarcity and radioactivity have severely limited the examination of its physical properties, and the values given ki Table 3 are much more uncertain than are the values Hsted for the other elements. [Pg.6]

Except for helium, all of the elements in Group 18 free2e into a face-centered cubic (fee) crystal stmeture at normal pressure. Both helium isotopes assume this stmeture only at high pressures. The formation of a high pressure phase of soHd xenon having electrical conductivity comparable to a metal has been reported at 33 GPa (330 kbar) and 32 K, and similar transformations by a band-overlap process have been predicted at 15 GPa (150 kbar) for radon and at 60 GPa (600 kbar) for krypton (51). [Pg.7]

Radon A radioactive element, the heaviest of the noble gases, formed by the radioactive decay of radium. [Pg.1471]

The isolation and identification of 4 radioactive elements in minute amounts took place at the turn of the century, and in each case the insight provided by the periodic classification into the predicted chemical properties of these elements proved invaluable. Marie Curie identified polonium in 1898 and, later in the same year working with Pierre Curie, isolated radium. Actinium followed in 1899 (A. Debierne) and the heaviest noble gas, radon, in 1900 (F. E. Dorn). Details will be found in later chapters which also recount the discoveries made in the present century of protactinium (O. Hahn and Lise Meitner, 1917), hafnium (D. Coster and G. von Hevesey, 1923), rhenium (W. Noddack, Ida Tacke and O. Berg, 1925), technetium (C. Perrier and E. Segre, 1937), francium (Marguerite Percy, 1939) and promethium (J. A. Marinsky, L. E. Glendenin and C. D. Coryell, 1945). [Pg.30]

Element 86, the final member of the group, is a short-lived, radioactive element, formerly known as radium-emanation or niton or, depending on which radioactive series it originates in (i.e. which isotope) as radon, thoron, or actinon. It was first isolated and studied in 1902 by E. Rutherford and F. Soddy and is now universally known as radon (from radium and the termination-on adopted for the noble gases Latin radius, ray). [Pg.889]

Although the nucleus of the uranium atom is relatively stable, it is radioactive, and will remain that way for many years. The half-life of U-238 is over 4.5 billion years the half-life of U-235 is over 700 million years. (Half-life refers to the amount of time it takes for one half of the radioactive material to undergo radioactive decay, turning into a more stable atom.) Because of uranium radiation, and to a lesser extent other radioactive elements such as radium and radon, uranium mineral deposits emit a finite quantity of radiation that require precautions to protect workers at the mining site. Gamma radiation is the... [Pg.866]

Fig. 17.7), is therefore the nucleus of an atom of a different element. For example, when a radon-222 nucleus emits an a particle, a polonium-218 nucleus is formed. In this case, a nuclear transmutation, the conversion of one element into another, has taken place. Another important difference between nuclear and chemical reactions is that energy changes are very much greater for nuclear reactions than for chemical reactions. For example, the combustion of 1.0 g of methane produces about 52 kj of energy as heat. In contrast, a nuclear reaction of 1.0 g of uranium-235 produces about 8.2 X 10 kj of energy, more than a million times as much. [Pg.821]

C02-0017. Recently, there has been concern about pollution in the home from radon, a radioactive gas whose elemental molar mass is 222 g/mol. The Environmental Protection Agency believes that a level of radon of 3.6 X 10" g / i of air is unhealthy. At this level, how many moles of radon would there be in a living room whose volume is 2455 L How many atoms is this ... [Pg.102]


See other pages where Radon elements is mentioned: [Pg.161]    [Pg.161]    [Pg.659]    [Pg.213]    [Pg.161]    [Pg.161]    [Pg.6]    [Pg.17]    [Pg.102]    [Pg.161]    [Pg.161]    [Pg.659]    [Pg.213]    [Pg.161]    [Pg.161]    [Pg.6]    [Pg.17]    [Pg.102]    [Pg.281]    [Pg.340]    [Pg.156]    [Pg.88]    [Pg.227]    [Pg.123]    [Pg.137]    [Pg.151]    [Pg.185]    [Pg.4]    [Pg.22]    [Pg.25]    [Pg.26]    [Pg.243]    [Pg.388]    [Pg.91]    [Pg.91]    [Pg.272]    [Pg.45]    [Pg.127]    [Pg.764]   
See also in sourсe #XX -- [ Pg.128 ]

See also in sourсe #XX -- [ Pg.128 ]




SEARCH



© 2024 chempedia.info