Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radicals discovery

Mechanism. The thermal cracking of hydrocarbons proceeds via a free-radical mechanism (20). Siace that discovery, many reaction schemes have been proposed for various hydrocarbon feeds (21—24). Siace radicals are neutral species with a short life, their concentrations under reaction conditions are extremely small. Therefore, the iategration of continuity equations involving radical and molecular species requires special iategration algorithms (25). An approximate method known as pseudo steady-state approximation has been used ia chemical kinetics for many years (26,27). The errors associated with various approximations ia predicting the product distribution have been given (28). [Pg.434]

Despite some recent discoveries, free radical reactions are still very much less common in azole chemistry than those involving electrophilic or nucleophilic reagents. In some reactions involving free radicals, substituents have little orienting effect however, rather selective radical reactions are now known. [Pg.72]

Sjsj2 reaction and, 377-378 Benzylic radical, resonance in, 578 spin-density surface of, 578 Benzylpenicillin, discovery of, 824 structure of, 1 Benzyne, 575... [Pg.1288]

The great advance in the field of instrumentation, coupled with the discovery of the heterogeneity of the pyrethrolone radical, has advanced the knowledge of pyrethrum chemistry considerably beyond that known in 1945. LaForge and Barthel (24,25) have shown the structure of the active ingredients of pyrethrum, known collectively as pyrethrins, to be esters as represented by the structure shown in Table I. [Pg.43]

The radical-based functionalization of silicon surfaces is a growing area because of the potential practical applications. Although further knowledge is needed, the scope, limitations, and mechanism of these reachons are sufficiently well understood that they can be used predictably and reliably in the modification of hydrogen-terminated silicon surfaces. The radical chemistry of (TMSlsSiH has frequently served as a model in reactions of both hydrogen-terminated porous and flat silicon surfaces. We trust that the survey presented here will serve as a platform to expand silicon radical chemistry with new and exciting discoveries. [Pg.176]

Tervalent organophosphorus compounds containing one single P-N bond with the valency of each atom saturated by protons or carbons (but no other heteroatoms) have been known since their discovery by MichaeUs more than one century ago [ 1 ] and named indistinctly as aminophosphanes, phosphanamines, phosphazanes, or phosphinous amides. This last chemical nomenclature is the one used by the Chemical Abstracts Service (CAS) for indexing these compounds and is also the one that best delimits the scope of this review those species derived from the parent H2P-NH2 (phosphinous amide in CAS nomenclature) by partial or total substitution of protons by hydrocarbon radicals (Table 1). [Pg.78]

The several polymeric metal carbonyls studied have led to some surprisingly high yields [e.g., Fe3(CO),2 and Ruj(CO)j2 in Table IV] but to no substantiated mechanisms. The 17% yield of Fe3(CO),2 in neutron-irradiated Fe(CO)j was interpreted as a reaction of Fe(CO)4 with the Fe(CO)5, but no further evidence is available. The study of Mn2(CO),o has been fruitful (44, 46). The insensitivity of the parent yield MnMn(CO),o to heat indicates that the molecule is formed by a reaction quite early in the sequence, perhaps epithermal. The discovery (46) of a species which reacts rapidly with I2 and exchanges with IMn(CO)5 led to the conclusion that the Mn(CO)5 radical is produced prominently (4.5%) by nuclear reactions in the solid decacarbonyl. The availability of this labeled Mn(CO)5 has made possible several interesting observations about the exchange properties of this radical in the solid (45) and in solution (42). [Pg.229]

Rutherford s discovery of the proton did not radically change the picture of the atom, but it did present a problem. The atom was still thought to be made up of a heavy, positively charged nucleus surrounded by electrons. The difference was that scientists now knew that the nucleus was composed of protons. Measurements showed that the electrical charge of a proton was identical to, but opposite of, the charge on an electron. The proton s charge was positive, the electron s negative. Because atoms are electrically neutral, the number of protons in the nucleus had to equal the number of electrons. And that was the problem. [Pg.31]

The chemistry of the heavy analogs of organic free radicals, that is, radicals centered on the Si, Ge, Sn, and Pb atoms, has been thoroughly reviewed several times, particularly that of the silyl radicals. Therefore, in the present review we will briefly bring together the most important discoveries in this field with particular attention paid to the most recent developments and progress, especially in the synthesis of the stable representatives of heavier group 14 elements centered radicals. ... [Pg.70]

Since the discovery of the first organic conductors based on TTF, [TTF]C1 in 1972 [38] and TTF - TCNQ in 1973 [39], TTF has been the elementary building block of hundreds of conducting salts [40] (1) charge-transfer salts if an electron acceptor such as TCNQ is used, and (2) cation radical salts when an innocent anion is introduced by electrocrystallization [41]. In both cases, a mixed-valence state of the TTF is required to allow for a metallic conductivity (Scheme 5), as the fully oxidized salts of TTF+ cation radicals most often either behave as Mott insulators (weakly interacting spins) or associate into... [Pg.197]

Steric effects have been discussed in free radical chemistry ever since the discovery of the first free radical, triphenylmethyl 1 by M. Gomberg in 19001. To what extent is the dissociation of its dimer, which was believed to be hexaphenylethane 23 till 19682 determined by electronic stabilization of triphenylmethyl 1 or by steric strain in its dimer ... [Pg.3]

The recognition of anti-Markownikoff orientation when HBr was added to alkenes in the presence of traces of peroxides or air lead to the discovery of the large and important class of free radical addition reactions to unsaturated systems89). The ant Markownikoff orientation of these reactions i.e., the preference of initial radical at-... [Pg.22]

Since its discovery in the late 1960s [41,42], the method of spin trapping has been extensively used for the detection and identification of short-lived free radicals in chemistry, biology, and medicine studies [41-50]. The method is based on the scavenging of radicals, P by a spin trap, leading to the formation of a spin adduct with higher stability, typically a nitroxide radical. Nitroso and... [Pg.507]

In recent years, the importance of aliphatic nitro compounds has greatly increased, due to the discovery of new selective transformations. These topics are discussed in the following chapters Stereoselective Henry reaction (chapter 3.3), Asymmetric Micheal additions (chapter 4.4), use of nitroalkenes as heterodienes in tandem [4+2]/[3+2] cycloadditions (chapter 8) and radical denitration (chapter 7.2). These reactions discovered in recent years constitute important tools in organic synthesis. They are discussed in more detail than the conventional reactions such as the Nef reaction, reduction to amines, synthesis of nitro sugars, alkylation and acylation (chapter 5). Concerning aromatic nitro chemistry, the preparation of substituted aromatic compounds via the SNAr reaction and nucleophilic aromatic substitution of hydrogen (VNS) are discussed (chapter 9). Preparation of heterocycles such as indoles, are covered (chapter 10). [Pg.381]

The above historical outline refers mainly to the EPR of transition ions. Key events in the development of radical bioEPR were the synthesis and binding to biomolecules of stable spin labels in 1965 in Stanford (e.g., Griffith and McConnell 1966) and the discovery of spin traps in the second half of the 1960s by the groups of M. Iwamura and N. Inamoto in Tokyo A. Mackor et al. in Amsterdam and E. G. Janzen and B. J. Blackburn in Athens, Georgia (e.g., Janzen 1971), and their subsequent application in biological systems by J. R. Harbour and J. R. Bolton in London, Ontario (Harbour and Bolton 1975). [Pg.7]

The second assumption has been effectively invalidated by the discovery of the hydrated electron. However, the effects of LET and solute concentration on molecular yields indicate that some kind of radical diffusion model is indeed required. Kuppermann (1967) and Schwarz (1969) have demonstrated that the hydrated electron can be included in such a model. Schwarz (1964) remarked that Magee s estimate of the distance traveled by the electron at thermalization (on the order of a few nanometers) was correct, but his conjecture about its fate was wrong. On the other hand, Platzman was correct about its fate—namely, solvation—but wrong about the distance traveled (tens of nanometers). [Pg.201]

Discovery of the hydrated electron and pulse-radiolytic measurement of specific rates (giving generally different values for different reactions) necessitated consideration of multiradical diffusion models, for which the pioneering efforts were made by Kuppermann (1967) and by Schwarz (1969). In Kuppermann s model, there are seven reactive species. The four primary radicals are eh, H, H30+, and OH. Two secondary species, OH- and H202, are products of primary reactions while these themselves undergo various secondary reactions. The seventh species, the O atom was included for material balance as suggested by Allen (1964). However, since its initial yield is taken to be only 4% of the ionization yield, its involvement is not evident in the calculation. [Pg.210]

There has been considerable interest in the magnetic behaviour of thiazyl radicals because of the discovery of long-range magnetic order in derivatives of 2. [Pg.740]


See other pages where Radicals discovery is mentioned: [Pg.406]    [Pg.334]    [Pg.132]    [Pg.367]    [Pg.519]    [Pg.495]    [Pg.525]    [Pg.359]    [Pg.174]    [Pg.382]    [Pg.583]    [Pg.67]    [Pg.478]    [Pg.233]    [Pg.348]    [Pg.88]    [Pg.325]    [Pg.4]    [Pg.307]    [Pg.227]    [Pg.230]    [Pg.352]    [Pg.568]    [Pg.627]    [Pg.231]    [Pg.3]    [Pg.224]    [Pg.209]    [Pg.315]    [Pg.25]   
See also in sourсe #XX -- [ Pg.926 ]




SEARCH



Column 1 Discovery of the OH Radical Chain Reaction

Triphenylmethyl radicals, dimerization discovery

© 2024 chempedia.info