Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radicalized chains

W. B. Motherwell, D. Crich Free Radical Chain Reactions in Organic Synthesis (Academic Press 1992)... [Pg.54]

The hydrogenolyaia of cyclopropane rings (C—C bond cleavage) has been described on p, 105. In syntheses of complex molecules reductive cleavage of alcohols, epoxides, and enol ethers of 5-keto esters are the most important examples, and some selectivity rules will be given. Primary alcohols are converted into tosylates much faster than secondary alcohols. The tosylate group is substituted by hydrogen upon treatment with LiAlH (W. Zorbach, 1961). Epoxides are also easily opened by LiAlH. The hydride ion attacks the less hindered carbon atom of the epoxide (H.B. Henhest, 1956). The reduction of sterically hindered enol ethers of 9-keto esters with lithium in ammonia leads to the a,/S-unsaturated ester and subsequently to the saturated ester in reasonable yields (R.M. Coates, 1970). Tributyltin hydride reduces halides to hydrocarbons stereoselectively in a free-radical chain reaction (L.W. Menapace, 1964) and reacts only slowly with C 0 and C—C double bonds (W.T. Brady, 1970 H.G. Kuivila, 1968). [Pg.114]

Bromine reacts with alkanes by a free radical chain mechanism analogous to that of chlorine There is an important difference between chlorination and brommation how ever Brommation is highly selective for substitution of tertiary hydrogens The spread m reactivity among pnmary secondary and tertiary hydrogens is greater than 10 ... [Pg.177]

The elementary steps (1) through (3) describe a free radical chain mech anism for the reaction of an alkane with a halogen... [Pg.181]

The reaction proceeds by a free radical chain mechanism involving the following prop agation steps... [Pg.396]

Termination steps (Section 4 17) Reactions that halt a chain reaction In a free radical chain reaction termination steps consume free radicals without generating new radicals to continue the chain... [Pg.1295]

Inhibitors slow or stop polymerization by reacting with the initiator or the growing polymer chain. The free radical formed from an inhibitor must be sufficiently unreactive that it does not function as a chain-transfer agent and begin another growing chain. Benzoquinone is a typical free-radical chain inhibitor. The resonance-stabilized free radical usually dimerizes or disproportionates to produce inert products and end the chain process. [Pg.1010]

Photoinitiation is not as important as thermal initiation in the overall picture of free-radical chain-growth polymerization. The foregoing discussion reveals, however, that the contrast between the two modes of initiation does provide insight into and confirmation of various aspects of addition polymerization. The most important application of photoinitiated polymerization is in providing a third experimental relationship among the kinetic parameters of the chain mechanism. We shall consider this in the next section. [Pg.371]

We begin our discussion of copolymers by considering the free-radical polymerization of a mixture of two monomers. Mi and M2. This is already a narrow view of the entire field of copolymers, since more than two repeat units can be present in copolymers and, in addition, mechanisms other than free-radical chain growth can be responsible for copolymer formation. The essential features of the problem are introduced by this simpler special case, so we shall restrict our attention to this system. [Pg.424]

In writing Eqs. (7.1)-(7.4) we make the customary assumption that the kinetic constants are independent of the size of the radical and we indicate the concentration of all radicals, whatever their chain length, ending with the Mj repeat unit by the notation [Mj ], This formalism therefore assumes that only the nature of the radical chain end influences the rate constant for propagation. We refer to this as the terminal control mechanism. If we wished to consider the effect of the next-to-last repeat unit in the radical, each of these reactions and the associated rate laws would be replaced by two alternatives. Thus reaction (7. A) becomes... [Pg.425]

In contrast, the ultrasonic irradiation of organic Hquids has been less studied. SusHck and co-workers estabHshed that virtually all organic Hquids wiU generate free radicals upon ultrasonic irradiation, as long as the total vapor pressure is low enough to allow effective bubble coUapse (49). The sonolysis of simple hydrocarbons (for example, alkanes) creates the same kinds of products associated with very high temperature pyrolysis (50). Most of these products (H2, CH4, and the smaller 1-alkenes) derive from a weU-understood radical chain mechanism. [Pg.262]

During the vapor deposition process, the polymer chain ends remain truly aUve, ceasing to grow only when they are so far from the growth interface that fresh monomer can no longer reach them. No specific termination chemistry is needed, although subsequent to the deposition, reaction with atmospheric oxygen, as well as other chemical conversions that alter the nature of the free-radical chain ends, is clearly supported experimentally. [Pg.433]

Like most other engineering thermoplastics, acetal resins are susceptible to photooxidation by oxidative radical chain reactions. Carbon—hydrogen bonds in the methylene groups are principal sites for initial attack. Photooxidative degradation is typically first manifested as chalking on the surfaces of parts. [Pg.57]

For a growing radical chain that has monomer 1 at its radical end, its rate constant for combination with monomer 1 is designated and with monomer 2, Similady, for a chain with monomer 2 at its growing end, the rate constant for combination with monomer 2 is / 22 with monomer 1, The reactivity ratios may be calculated from Price-Alfrey and e values, which are given in Table 8 for the more important acryUc esters (87). The sequence distributions of numerous acryUc copolymers have been determined experimentally utilizing nmr techniques (88,89). Several review articles discuss copolymerization (84,85). [Pg.166]

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

The fluorination reaction is best described as a radical-chain process involving fluorine atoms (19) and hydrogen abstraction as the initiation step. If the molecule contains unsaturation, addition of fluorine also takes place (17). Gomplete fluorination of complex molecules can be conducted using this method (see Fluorine compounds, organic-direct fluorination). [Pg.268]

Chemical Factors. Because knock is caused by chemical reactions in the engine, it is reasonable to assume that chemical stmcture plays an important role in determining the resistance of a particular compound to knock. Reactions that produce knock are generally free-radical chain-type reactions which are different from those that occur in the body of the flame the former occur at lower temperatures and are called cool flame reactions. [Pg.179]

The alkanes have low reactivities as compared to other hydrocarbons. Much alkane chemistry involves free-radical chain reactions that occur under vigorous conditions, eg, combustion and pyrolysis. Isobutane exhibits a different chemical behavior than / -butane, owing in part to the presence of a tertiary carbon atom and to the stability of the associated free radical. [Pg.402]

The reaction with fluorine occurs spontaneously and explosively, even in the dark at low temperatures. This hydrogen—fluorine reaction is of interest in rocket propellant systems (99—102) (see Explosives and propellants, propellants). The reactions with chlorine and bromine are radical-chain reactions initiated by heat or radiation (103—105). The hydrogen-iodine reaction can be carried out thermally or catalyticaHy (106). [Pg.417]

E. S. Huyser, Free Radical Chain Reactions, Wiley-Interscience, New York, 1970. [Pg.233]

Aqueous Phase. In pure water, the decomposition of ozone at 20°C iavolves a complex radical chain mechanism, initiated by OH and propagated by O2 radical ions and HO radicals (25). O3 is a radical ion. [Pg.491]

Many hydroperoxides have been prepared by autoxidation of suitable substrates with molecular oxygen (45,52,55). These reactions can be free-radical chain or nonchain processes, depending on whether triplet or singlet oxygen is involved. The free-radical process consists of three stages ... [Pg.104]

Hydroperoxides have been obtained from the autoxidation of alkanes, aralkanes, alkenes, ketones, enols, hydrazones, aromatic amines, amides, ethers, acetals, alcohols, and organomineral compounds, eg, Grignard reagents (10,45). In autoxidations involving hydrazones, double-bond migration occurs with the formation of hydroperoxy—azo compounds via free-radical chain processes (10,59) (eq. 20). [Pg.105]

Another method for producing petoxycatboxyhc acids is by autoxidation of aldehydes (168). The reaction is a free-radical chain process, initiated by organic peroxides, uv irradiation, o2one, and various metal salts. It is terrninated by free-radical inhibitors (181,183). In certain cases, the petoxycatboxyhc acid forms an adduct with the aldehyde from which the petoxycatboxyhc acid can be hberated by heating or by acid hydrolysis. If the petoxycatboxyhc acid remains in contact with excess aldehyde, a redox disproportionation reaction occurs that forms a catboxyhc acid ... [Pg.119]

The main industrial use of alkyl peroxyesters is in the initiation of free-radical chain reactions, primarily for vinyl monomer polymerizations. Decomposition of unsymmetrical diperoxyesters, in which the two peroxyester functions decompose at different rates, results in the formation of polymers of enhanced molecular weights, presumably due to chain extension by sequential initiation (204). [Pg.131]

A more energy-efficient variation of photohalogenation, which has been used since the 1940s to produce chlorinated solvents, is the Kharasch process (45). Ultraviolet radiation is used to photocleave ben2oyl peroxide (see Peroxides and peroxide compounds). The radical products react with sulfuryl chloride (from SO2 and CI2) to Hberate atomic chlorine and initiate a radical chain process in which hydrocarbons become halogenated. Thus, for Ar = aryl,... [Pg.391]


See other pages where Radicalized chains is mentioned: [Pg.143]    [Pg.1106]    [Pg.2515]    [Pg.54]    [Pg.55]    [Pg.145]    [Pg.121]    [Pg.125]    [Pg.173]    [Pg.370]    [Pg.58]    [Pg.485]    [Pg.180]    [Pg.44]    [Pg.266]    [Pg.334]    [Pg.219]    [Pg.452]    [Pg.395]    [Pg.328]    [Pg.378]    [Pg.436]    [Pg.425]    [Pg.414]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Chain radical

© 2024 chempedia.info