Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical reactions termination step

Termination steps (Section 4 17) Reactions that halt a chain reaction In a free radical chain reaction termination steps consume free radicals without generating new radicals to continue the chain... [Pg.1295]

Dithiols and dienes may react spontaneously to afford dithiols or dienes depending on the monomer dithiol ratio.221 However, the precise mechanism of radical formation is not known. More commonly, pholoinilialion or conventional radical initiators are employed. The initiation process requires formation of a radical to abstract from thiol or add to the diene then propagation can occur according to the steps shown in Scheme 7.17 until termination occurs by radical-radical reaction. Termination is usually written as involving the monomer-derived radicals. The process is remarkably tolerant of oxygen and impurities. The kinetics of the tbiol-ene photopolymerizalion have been studied by Bowman and... [Pg.378]

Because of the precise control of the redox steps by means of the electrode potential and the facile measurement of the kinetics through the current, the electrochemical approach to. S rn I reactions is particularly well suited to assessing the validity of the. S rn I mechanism and identifying the side reactions (termination steps of the chain process). It also allows full kinetic characterization of the reaction sequence. The two key steps of the reaction are the cleavage of the initial anion radical, ArX -, and conversely, formation of the product anion radical, ArNu -. Modeling these reactions as concerted intramolecular electron transfer/bond-breaking and bond-forming processes, respectively, allows the establishment of reactivity-structure relationships as shown in Section 3.5. [Pg.163]

At this point, it can be concluded that the direct and indirect electrochemical approach of the reaction in the case of aryl halides has provided a quantitative kinetic demonstration of the mechanism and the establishment of the nature of the side-reactions (termination steps in the chain process). In poor H-atom donor solvents, the latter involve electron-transfer reduction of the aryl radical. [Pg.89]

The combination of any two free radicals is a termination step because it decreases the number of free radicals. Other termination steps involve reactions of free radicals with the walls of the vessel or other contaminants. Although the first of these termination steps gives chloromethane, one of the products, it consumes the free radicals that are necessary for the reaction to continue, thus breaking the chain. Its contribution to the amount of product obtained from the reaction is small compared with the contribution of the propagation steps. [Pg.137]

Any less than 10 mol%, however, and the yield drops. The problem is that the chain reaction is not 100% efficient. Because the concentration of radicals in the reaction mixture is low, radical-radical reactions are rare, but nonetheless they happen often enough that more peroxide keeps being needed to start the chain off again possible radical-radical chain termination steps... [Pg.1034]

The chain length of these two radical-reaction steps is about 100. When the radical concentration has reached a certain limit, the chain reaction is gradually stopped by mutual combination of radicals, the termination step. [Pg.101]

Thus, the thermal decomposition of tetramethyldibismuthine in the presence of bromotrichloromethane may take place via the following chain mechanism, (i) Tetramethyldibismuthine decomposes first into two dimethyl-bismuth radicals, (ii) These radicals react with bromotrichloromethane to form bromodimethylbismuthine bromide and a trichloromethyl radical, (iii) The trichloromethyl radical reacts with the dibismuthine to form dimethyl(trichlor-omethyl)bismuthine and dimethylbismuth radical. The termination step is the self-combination of the trichloromethyl radicals. In fact, the major product of the reaction is bromodimethylbismuthine bromide and the second product is dimethyl(trichloromethyl)bismuthine. Trimethylbismuthine, hexachloro-ethane and tetrachloroethylene are also formed in smaller quantities [830M1859]. [Pg.116]

This chain reaction continues as long as there is a significant concentration of radicals. Chain termination steps eliminate two radicals and can eventually terminate the reaction. [Pg.1063]

In a radical reaction, the steps that propagate the chain reaction compete with the steps that terminate it. Termination steps are always exothermic, because only bond making (and no bond breaking) occurs. Therefore, only when both propagation steps are exothermic can propagation compete successfully with termination. When HCl or HI adds to an alkene in the presence of a peroxide, any chain reaction that is initiated is then terminated rather than propagated because propagation caimot compete successfully with termination. Consequently, the radical chain reaction does not take place, and the only reaction that occurs is ionic addition (H" followed by Cr or F"). [Pg.571]

Polymerization reactions. There are two broad types of polymerization reactions, those which involve a termination step and those which do not. An example that involves a termination step is free-radical polymerization of an alkene molecule. The polymerization requires a free radical from an initiator compound such as a peroxide. The initiator breaks down to form a free radical (e.g., CH3 or OH), which attaches to a molecule of alkene and in so doing generates another free radical. Consider the polymerization of vinyl chloride from a free-radical initiator R. An initiation step first occurs ... [Pg.21]

Tlie formation of initiator radicals is not the only process that determines the concentration of free radicals in a polymerization system. Polymer propagation itself does not change the radical concentration it merely changes one radical to another. Termination steps also occur, however, and these remove radicals from the system. We shall discuss combination and disproportionation reactions as modes of termination. [Pg.358]

A typical example of a nonpolymeric chain-propagating radical reaction is the anti-Markovnikov addition of hydrogen sulfide to a terminal olefin. The mechanism involves alternating abstraction and addition reactions in the propagating steps ... [Pg.220]

Autooxidation. Liquid-phase oxidation of hydrocarbons, alcohols, and aldehydes by oxygen produces chemiluminescence in quantum yields of 10 to 10 ° ein/mol (128—130). Although the efficiency is low, the chemiluminescent reaction is important because it provides an easy tool for study of the kinetics and properties of autooxidation reactions including industrially important processes (128,131). The light is derived from combination of peroxyl radicals (132), which are primarily responsible for the propagation and termination of the autooxidation chain reaction. The chemiluminescent termination step for secondary peroxy radicals is as follows ... [Pg.269]

Tertiary peroxyl radicals also produce chemiluminescence although with lower efficiencies. For example, the intensity from cumene autooxidation, where the peroxyl radical is tertiary, is a factor of 10 less than that from ethylbenzene (132). The chemiluminescent mechanism for cumene may be the same as for secondary hydrocarbons because methylperoxy radical combination is involved in the termination step. The primary methylperoxyl radical terminates according to the chemiluminescent reaction just shown for (36), ie, R = H. [Pg.269]

Autoca.ta.Iysis. The oxidation rate at the start of aging is usually low and increases with time. Radicals, produced by the homolytic decomposition of hydroperoxides and peroxides (eqs. 2—4) accumulated during the propagation and termination steps, initiate new oxidative chain reactions, thereby increasing the oxidation rate. [Pg.223]

A factor in addition to the RTD and temperature distribution that affects the molecular weight distribution (MWD) is the nature of the chemical reaciion. If the period during which the molecule is growing is short compared with the residence time in the reactor, the MWD in a batch reactor is broader than in a CSTR. This situation holds for many free radical and ionic polymerization processes where the reaction intermediates are very short hved. In cases where the growth period is the same as the residence time in the reactor, the MWD is narrower in batch than in CSTR. Polymerizations that have no termination step—for instance, polycondensations—are of this type. This topic is treated by Denbigh (J. Applied Chem., 1, 227 [1951]). [Pg.2102]

The result of the steady-state condition is that the overall rate of initiation must equal the total rate of termination. The application of the steady-state approximation and the resulting equality of the initiation and termination rates permits formulation of a rate law for the reaction mechanism above. The overall stoichiometry of a free-radical chain reaction is independent of the initiating and termination steps because the reactants are consumed and products formed almost entirely in the propagation steps. [Pg.683]

Like many radical reactions in the laboratory, methane chlorination requires three kinds of steps initiation, propagation, and termination. [Pg.140]

Termination Occasionally, two radicals might collide and combine to form a stable product. When that happens, the reaction cycle is broken and the chain is ended. Such termination steps occur infrequently, however, because the concentration of radicals in the reaction at any given moment is very small. Thus, the likelihood that two radicals will collide is also small. [Pg.141]

Problem 7.19 Oik- of the chain-termination steps that sometimes occurs to interrupt polymerization is the following reaction between two radicals. Propose a mechanism for the reaction, using fishhook arrows to indicate electron flow. [Pg.243]

It remains a common misconception that radical-radical termination is suppressed in processes such as NMP or ATRP. Another issue, in many people s minds, is whether processes that involve an irreversible termination step, even as a minor side reaction, should be called living. Living radical polymerization appears to be an oxymoron and the heading to this section a contradiction in terms (Section 9.1.1). In any processes that involve propagating radicals, there will be a finite rate of termination commensurate with the concentration of propagating radicals and the reaction conditions. The processes that fall under the heading of living or controlled radical polymerization (e.g. NMP, ATRP, RAFT) provide no exceptions. [Pg.250]

Even though the rate of radical-radical reaction is determined by diffusion, this docs not mean there is no selectivity in the termination step. As with small radicals (Section 2.5), self-reaction may occur by combination or disproportionation. In some cases, there are multiple pathways for combination and disproportionation. Combination involves the coupling of two radicals (Scheme 5.1). The resulting polymer chain has a molecular weight equal to the sum of the molecular weights of the reactant species. If all chains are formed from initiator-derived radicals, then the combination product will have two initiator-derived ends. Disproportionation involves the transfer of a P-hydrogen from one propagating radical to the other. This results in the formation of two polymer molecules. Both chains have one initiator-derived end. One chain has an unsaturated end, the other has a saturated end (Scheme 5.1). [Pg.251]


See other pages where Radical reactions termination step is mentioned: [Pg.252]    [Pg.2]    [Pg.3]    [Pg.2]    [Pg.171]    [Pg.277]    [Pg.1306]    [Pg.313]    [Pg.192]    [Pg.684]    [Pg.191]    [Pg.1313]    [Pg.628]    [Pg.223]    [Pg.182]   
See also in sourсe #XX -- [ Pg.141 ]

See also in sourсe #XX -- [ Pg.141 ]

See also in sourсe #XX -- [ Pg.180 ]




SEARCH



Radical reactions termination

Radical termination

Radicals terminators

Reaction terminating

Reaction, terminal

Reactions termination steps

Step reactions

Termination reaction

Termination step

© 2024 chempedia.info