Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical cations substitution

The neat resin preparation for PPS is quite compHcated, despite the fact that the overall polymerization reaction appears to be simple. Several commercial PPS polymerization processes that feature some steps in common have been described (1,2). At least three different mechanisms have been pubUshed in an attempt to describe the basic reaction of a sodium sulfide equivalent and -dichlorobenzene these are S Ar (13,16,19), radical cation (20,21), and Buimett s (22) Sj l radical anion (23—25) mechanisms. The benzyne mechanism was ruled out (16) based on the observation that the para-substitution pattern of the monomer, -dichlorobenzene, is retained in the repeating unit of the polymer. Demonstration that the step-growth polymerization of sodium sulfide and /)-dichlorohenzene proceeds via the S Ar mechanism is fairly recent (1991) (26). Eurther complexity in the polymerization is the incorporation of comonomers that alter the polymer stmcture, thereby modifying the properties of the polymer. Additionally, post-polymerization treatments can be utilized, which modify the properties of the polymer. Preparation of the neat resin is an area of significant latitude and extreme importance for the end user. [Pg.442]

The mass spectrum of 2-pyrone shows an abundant molecular ion and a very prominent ion due to loss of CO and formation of the furan radical cation. Loss of CO from 4-pyrone, on the other hand, is almost negligible, and the retro-Diels-Alder fragmentation pathway dominates. In alkyl-substituted 2-pyrones loss of CO is followed by loss of a hydrogen atom from the alkyl substituent and ring expansion of the resultant cation to the very stable pyrylium cation. Similar trends are observed with the benzo analogues of the pyrones, although in some cases both modes of fragmentation are observed. Thus, coumarins. [Pg.22]

An interesting method for the substitution of a hydrogen atom in rr-electron deficient heterocycles was reported some years ago, in the possibility of homolytic aromatic displacement (74AHC(16)123). The nucleophilic character of radicals and the important role of polar factors in this type of substitution are the essentials for a successful reaction with six-membered nitrogen heterocycles in general. No paper has yet been published describing homolytic substitution reactions of pteridines with nucleophilic radicals such as alkyl, carbamoyl, a-oxyalkyl and a-A-alkyl radicals or with amino radical cations. [Pg.290]

Aromatic ethers and furans undergo alkoxylation by addition upon electrolysis in an alcohol containing a suitable electrolyte.Other compounds such as aromatic hydrocarbons, alkenes, A -alkyl amides, and ethers lead to alkoxylated products by substitution. Two mechanisms for these electrochemical alkoxylations are currently discussed. The first one consists of direct oxidation of the substrate to give the radical cation which reacts with the alcohol, followed by reoxidation of the intermediate radical and either alcoholysis or elimination of a proton to the final product. In the second mechanism the primary step is the oxidation of the alcoholate to give an alkoxyl radical which then reacts with the substrate, the consequent steps then being the same as above. The formation of quinone acetals in particular seems to proceed via the second mechanism. ... [Pg.94]

The reaction proceeds by an ET pathway giving the I9e organoiron radical cation and the organic radical R which couple in the cage after escape ofX. The cationic Fe1 intermediate is noted at low temperature by its characteristic purple color and the classical spectrum of Fe1 species with rhombic distortion (g = 2.091, 2.012, 2.003 at —140 °C in acetone) before collapse to the orange substituted cyclohexa-dienyl Fe11 complexes. [Pg.59]

Substituted phenylacetic acids form Kolbe dimers when the phenyl substituents are hydrogen or are electron attracting (Table 2, Nos. 20-23) they yield methyl ethers (non-Kolbe products), when the substituents are electron donating (see also chap. 8). Benzoic acid does not decarboxylate to diphenyl. Here the aromatic nucleus is rather oxidized to a radical cation, that undergoes aromatic substitution with the solvent [145]. [Pg.104]

For a review of radical processes in aromatic nitration, see Ridd, J.H. Chem. Soc. Rev., 1991,20,149. For a review of aromatic substitutions involving radical cations, see Kochi, J.K. Adv. Free Radical Chem. (Greenwich, Conn.), 1990, 1, 53. [Pg.743]

The substituted radical cations [Me2S.. SMe2], [Et2S. .SEt2] and [Et2S.. SMe2] (Fig. 4) have been studied by lilies, McKee and co-workers using a combined experimental/theoretical approach [127-129]. Mass spectrometry experiments on the gas-phase association reactions... [Pg.24]

Rosenblatt etal have examined the effect of structure and isotopic substitution upon the permanganate oxidation of some alky famines (Table 4). The isotope effect of 1.84 is considered to be sufficiently low to be compatible with aminium radical-cation formation, and it is felt that, while C-H cleavage is significant for oxidation of primary amines, the dominant mode of oxidation of tertiary amines is electron-transfer, e.g. [Pg.319]

This is consistent with the observed products of oxidation, i.e. benzyl alcohol, benzaldehyde and benzoic acid and with the observed oxidation of cyclohexane. Radical-cations are, however, probably formed in oxidation of napthalene and anthracene. The increase of oxidation rate with acetonitrile concentration was intepreted in terms of a more reactive complex between Co(III) and CH3CN. The production of substituted benzophenones at high CH3CN concentration indicates the participation of a second route of oxidation. [Pg.373]

Direct esr evidence for the intermediacy of radical-cations was obtained on flowing solutions of Co(III) acetate and a variety of substituted benzenes and polynuclear aromatics together in glacial acetic acid or trifluoroacetic acid solution . A p value of —2.4 was reported for a series of toluenes but addition of chloride ions, which greatly accelerated the reaction rate, resulted in p falling to —1.35. Only trace quantities of -CH2OAC adducts were obtained and benzyl acetate is the chief product from toluene, in conformity with the equation given above. [Pg.374]

Crich D, Brebion F, Suk D-H (2006) Generation of Alkene Radical Cations by Heterolysis of -Substituted Radicals Mechanism, Stereochemistry, and Applications in Synthesis. 263-. 1-38... [Pg.258]

In the oxidation of aromatic substances at the anode, radical cations or dications are formed as intermediates and subsequently react with the solvent or with anions of the base electrolyte. For example, depending on the conditions, 1,4-dimethoxybenzene is cyanized after the substitution of one methoxy group, methoxylated after addition of two methoxy groups or acetoxylated after substitution of one hydrogen on the aromatic ring, as shown in Fig. 5.55, where the solvent is indicated over the arrow and the base electrolyte and electrode under the arrow for each reaction HAc denotes acetic acid. [Pg.397]

Our studies showed that i) substitution of an exocyclic amino group of dG is effective in modulating the chemical properties of dG toward one-electron oxidation, and ii) decomposition of the guanine radical cation was effectively suppressed near dphG. These results indicate that dphG is a prototype of nucleosides functioning as an intrinsic antioxidant of duplex DNA toward one-electron oxidation. [Pg.195]

Tram-anular interactions, which would create an active radical site via hydrogen transfer through 98, cannot be invoked to explain the specific loss of a CH3 radical from the ether side chain. This conclusions is based upon the following experimental observations. The radical cation of the tetrafluoro substituted compound 101 eliminates CH3, but loss of CH3 from the para-isomer 102 is not observed. If a transanuiar process according to 97- 98 were operative, then such a reaction is not expected to be suppressed upon substitution of H by F as is known for many examples from the field of photochemistry of fluoro substituted compounds41 (23). [Pg.19]

Halogen Loss from Cation Radicals of Substituted Cyclopropanes57>... [Pg.26]

The first step of a free radical aromatic substitution, the formation of the a-com-plex, is also an addition step. The o,m,p-product ratio therefore also responds to steric effects. This is shown for the free radical phenylation and dimethylamination of toluene and r.-butylbenzene in Table 8. The larger the substituent on the aromatic system and the bulkier the attacking radical, the more p-substitution product is obtained at the expense of o-substitution. In the phenylation reaction the yield of m-product also increases in contrast to the dimethylamination reaction. The substitution pattern of this latter reaction is, in addition to the steric effect, governed heavily by polar effects because a radical cation is the attacking species113. ... [Pg.25]

In order to understand these results it is necessary to consider the nature of the intermediates formed upon photolysis of arylamines. The absorption spectra of transients produced upon photolysis of aniline and various alkyl ring-substituted arylamines was obtained by Land and Porter (18) in different solvents using a flash photolysis apparatus. On this basis they identified both an anilinyl radical (PhNH-) and an anilinyl radical cation (PhNHj). The radical cation is present in polar media (H2O) but absent in cyclohexane. From these results, a homolytic cleavage... [Pg.126]


See other pages where Radical cations substitution is mentioned: [Pg.118]    [Pg.297]    [Pg.118]    [Pg.297]    [Pg.254]    [Pg.22]    [Pg.66]    [Pg.282]    [Pg.820]    [Pg.90]    [Pg.32]    [Pg.48]    [Pg.43]    [Pg.77]    [Pg.437]    [Pg.17]    [Pg.77]    [Pg.437]    [Pg.87]    [Pg.156]    [Pg.185]    [Pg.190]    [Pg.192]    [Pg.195]    [Pg.23]    [Pg.55]    [Pg.27]    [Pg.172]    [Pg.701]    [Pg.6]   
See also in sourсe #XX -- [ Pg.95 , Pg.251 ]




SEARCH



Cation substitution

Radicals 3-substituted

Substitution cationic

Substitution radical

© 2024 chempedia.info