Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical substitution mechanism

Crich D, Brebion F, Suk D-H (2006) Generation of Alkene Radical Cations by Heterolysis of -Substituted Radicals Mechanism, Stereochemistry, and Applications in Synthesis. 263-. 1-38... [Pg.258]

The free radical mechanism is confirmed by the fact that if a substituted aromatic hydrocarbon is used in this reaction, the incoming group (derived from the diazotate) may not necessarily occupy the position in the benzene ring normally determined by the substituent present—a characteristic of free radical reactions. [Pg.201]

Alkenes react with N bromosuccimmide (NBS) to give allylic bromides NBS serves as a source of Br2 and substitution occurs by a free radical mechanism The reaction is used for synthetic purposes only when the two resonance forms of the allylic radical are equivalent Otherwise a mixture of isomeric allylic bromides is produced... [Pg.416]

Addition to the Double Bond. Chlorine, bromine, and iodine react with aHyl chloride at temperatures below the inception of the substitution reaction to produce the 1,2,3-trihaLides. High temperature halogenation by a free-radical mechanism leads to unsaturated dihalides CH2=CHCHC1X. Hypochlorous and hypobromous acids add to form glycerol dihalohydrins, principally the 2,3-dihalo isomer. Dehydrohalogenation with alkah to epicbl orobydrin [106-89-8] is ofgreat industrial importance. [Pg.33]

Reaction Mechanism. High temperature vapor-phase chlorination of propylene [115-07-17 is a free-radical mechanism in which substitution of an allyhc hydrogen is favored over addition of chlorine to the double bond. Abstraction of allyhc hydrogen is especially favored since the allyl radical intermediate is stabilized by resonance between two symmetrical stmctures, both of which lead to allyl chloride. [Pg.33]

Aromatic ethers and furans undergo alkoxylation by addition upon electrolysis in an alcohol containing a suitable electrolyte.Other compounds such as aromatic hydrocarbons, alkenes, A -alkyl amides, and ethers lead to alkoxylated products by substitution. Two mechanisms for these electrochemical alkoxylations are currently discussed. The first one consists of direct oxidation of the substrate to give the radical cation which reacts with the alcohol, followed by reoxidation of the intermediate radical and either alcoholysis or elimination of a proton to the final product. In the second mechanism the primary step is the oxidation of the alcoholate to give an alkoxyl radical which then reacts with the substrate, the consequent steps then being the same as above. The formation of quinone acetals in particular seems to proceed via the second mechanism. ... [Pg.94]

Because the bromine adds to the less substituted carbon atom of the double bond, generating the more stable radical intermediate, the regioselectivity of radical-chain hydrobromination is opposite to that of ionic addition. The early work on the radical mechanism of addition of hydrogen bromide was undertaken to understand why Maikow-nikofF s rule was violated under certain circumstances. The cause was found to be conditions that initiated the radical-chain process, such as peroxide impurities or light. [Pg.708]

It has recently been suggested that a free radical mechanism i.e., homo-lytic cleavage of the oxygen-oxygen bond rather than the heterolytic cleavage pictured) may be involved in the reaction of some substituted benzophenones and peroxyacetic acid. [Pg.152]

Oxaziranes derived from isobutyraldehyde react with ferrous salts to give only substituted formamides fEq. (23)], The chain propagating radical 30 thus suffers fission with elimination of the isopropyl group. An H-transfer would lead to substituted butyramides, which are not found. Here is seen a parallel to the fragmentation of alkoxyl radicals, where the elimination of an alkyl group is also favored over hydrogen. The formulation of the oxazirane fission by a radical mechanism is thus supported. [Pg.99]

Structurally simple alJkyl halides can sometimes be prepared by reaction of an alkane with Cl2 or Br2 through a radical chain-reaction pathway (Section 5.3). Although inert to most reagents, alkanes react readily with Cl2 or Br2 in the presence of light to give alkyl halide substitution products. The reaction occurs by the radical mechanism shown in Figure 10.1 for chlorination. [Pg.335]

Baechler and coworkers204, have also studied the kinetics of the thermal isomerization of allylic sulfoxides and suggested a dissociative free radical mechanism. This process, depicted in equation 58, would account for the positive activation entropy, dramatic rate acceleration upon substitution at the a-allylic position, and relative insensitivity to changes in solvent polarity. Such a homolytic dissociative recombination process is also compatible with a similar study by Kwart and Benko204b employing heavy-atom kinetic isotope effects. [Pg.745]

The hydrostannation reaction can proceed either by a free-radical mechanism, or, with polar-substituted alkenes or alkynes, by a polar mechanism, respectively resulting in anti-Markownikoff or Markow-nikoff orientation. Both t3rpes of reaction are particularly suitable for preparing functionally substituted, organotin compounds. [Pg.7]

Much study has been devoted to the mechanisms of these reactions, but firm conclusions are still lacking, in part because the mechanisms vary depending on the metal, the R group, the catalyst, if any, and the reaction conditions. Two basic pathways can be envisioned a nucleophilic substitution process (which might be S l or Sn2) and a free-radical mechanism. This could be an SET pathway, or some other route that provides radicals. In either case, the two radicals R- and R would be in a solvent cage ... [Pg.537]

This is called the SrnI mechanism," and many other examples are known (see 13-3, 13-4,13-6,13-12). The lUPAC designation is T+Dn+An." Note that the last step of the mechanism produces ArT radical ions, so the process is a chain mechanism (see p. 895)." An electron donor is required to initiate the reaction. In the case above it was solvated electrons from KNH2 in NH3. Evidence was that the addition of potassium metal (a good producer of solvated electrons in ammonia) completely suppressed the cine substitution. Further evidence for the SrnI mechanism was that addition of radical scavengers (which would suppress a free-radical mechanism) led to 8 9 ratios much closer to 1.46 1. Numerous other observations of SrnI mechanisms that were stimulated by solvated electrons and inhibited by radical scavengers have also been recorded." Further evidence for the SrnI mechanism in the case above was that some 1,2,4-trimethylbenzene was found among the products. This could easily be formed by abstraction by Ar- of Ft from the solvent NH3. Besides initiation by solvated electrons," " SrnI reactions have been initiated photochemically," electrochemically," and even thermally." ... [Pg.856]

See Glaser, R. Horan, C.J. Nelson, E.D. Hall, M.K. J. Org. Chem., 1992,57, 215 for the influence of neighboring group interactions on the electronic stmcture of diazonium ions. Aryl iodonium salts Ar2l also undergo substitutions by this mechanism (and by a free-radical mechanism). [Pg.881]

In this chapter, we discuss free-radical substitution reactions. Free-radical additions to unsaturated compounds and rearrangements are discussed in Chapters 15 and 18, respectively. In addition, many of the oxidation-reduction reactions considered in Chapter 19 involve free-radical mechanisms. Several important types of free-radical reactions do not usually lead to reasonable yields of pure products and are not generally treated in this book. Among these are polymerizations and high-temperature pyrolyses. [Pg.896]

The mechanism is usually electrophilic (see p. 972), but when free-radical initiators (or UV light) are present, addition can occur by a free-radical mechanism. Once Br-or Cl- radicals are formed, however, substitution may compete (14-1 and 14-2). This is espiecially important when the alkene has allylic hydrogens. Under free-radical conditions (UV light) bromine or chlorine adds to the benzene ring to give, respectively, hexabromo- and hexachlorocyclohexane. These are mixtures of stereoisomers (see p. 161). ... [Pg.1042]

A subsequent detailed analysis of the permanganate oxidation of the tertiary hydrogen atom of 4-phenylvaleric acid in 2.5 M potassium hydroxide solution supports the caged radical mechanism. The reaction order is two overall, A h/ d is ca. 11.5, ring substitution has little elfect on the rate (p 0) and the oxidation proceeds with a net 30-40 % retention of optical configuration. [Pg.298]

For toluene fluorination, the impact of micro-reactor processing on the ratio of ortho-, meta- and para-isomers for monofluorinated toluene could be deduced and explained by a change in the type of reaction mechanism. The ortho-, meta- and para-isomer ratio was 5 1 3 for fluorination in a falling film micro reactor and a micro bubble column at a temperature of-16 °C [164,167]. This ratio is in accordance with an electrophilic substitution pathway. In contrast, radical mechanisms are strongly favored for conventional laboratory-scale processing, resulting in much more meta-substitution accompanied by imcontroUed multi-fluorination, addition and polymerization reactions. [Pg.72]


See other pages where Radical substitution mechanism is mentioned: [Pg.278]    [Pg.169]    [Pg.169]    [Pg.330]    [Pg.289]    [Pg.162]    [Pg.526]    [Pg.538]    [Pg.921]    [Pg.990]    [Pg.279]    [Pg.260]   
See also in sourсe #XX -- [ Pg.898 ]




SEARCH



Nucleophilic aromatic substitution radical chain mechanism

Radical Substitution Reaction Mechanisms

Radical chain substitution mechanism

Radical mechanism

Radicals 3-substituted

Some mechanisms of electrophilic and radical substitution reactions

Substitution mechanism, acidic radicals

Substitution radical

Substitution, radical nucleophilic, unimolecular mechanism

© 2024 chempedia.info