Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryne mechanism

The amination of 2-chloropyridine-A-oxide (53) with potassium amide in liquid ammonia yielded a mixture of 2-(55) and 3-amino-pyridine-A-oxide (56) in 5-10% total yield.This rearrangement might be explained by an aryne mechanism involving 2,3-pyridyne-A-oxide (54). Since the structure of 56, with its quaternary nitrogen atom, is more analogous to that of 3-methoxybenzyne (39) than to that of 2,3-pyridyne (26), an orientation effect directing the amide ion to C-3 can be expected here. [Pg.133]

Since heteroarynes are thus seen to be subject to strong orientation effects, the detection of the occurrence of the aryne mechanism and the evaluation of the extent of its participation require a special approach. Both the aryne and Sj Arl mechanisms can occur together, and variation of the leaving group on a substrate (e.g., 2-halonaphthalenes) can cause a complete shift from the aryne (2-chloro, -bromo, and -iodo) to the Sj Arl mechanism (2-fluoro) see also Section II, D, 1. [Pg.154]

The question of the occurrence of cine or aryne substitution in some of these reactions has been raised but not answered adequately. The normal product, 2-methoxynaphthalene was shown to be formed from 2-chloronaphthalene and methoxide ion, and the normal 6- and 8-piperidinoquinolines were proved to be products of piperidino-debromination of 6- and 8-bromoquinolines, all in unspecified yield. More highly activated compounds were then assumed not to react via the aryne mechanism. Even if the major product had been characterized, the occurrence of a substantial or predominant amount of aryne reaction may escape notice when strong orientation or steric effects lead to formation of the normal displacement product from the aryne. A substantial amoimt of concurrent aryne reaction may also escape detection if it yields an amount of cine-substituted material easily removed in purification or if the entire reaction mixture is not chromatographed Kauffman and Boettcher have demonstrated that activated compounds such as 4-chloropyridine do indeed react partially via the aryne mechanism (Section I,C,1). [Pg.331]

There seem to have been only two investigations on dediazoniations in a protic solvent, where the observed products indicate that, in addition to DN + AN solvolysis, an aryne is likely to be present as a metastable intermediate. Broxton and Bunnett (1979) have found that 3-nitroanisole is formed in the dediazoniation of 2-nitroben-zenediazonium ions in methanol in the presence of methoxide ions. This has to be interpreted as a product arising from 3-nitro-l,2-benzyne as an intermediate. The occurrence of the aryne mechanism in poly (hydrogen fluoride)-pyridine mixtures, as discovered by Olah and Welch (1975), is mentioned in Section 8.2. [Pg.186]

Aromatic substitution, a quantitative treatment of directive effects in, 1, 35 Aromatic substitution reactions, hydrogen isotope effects in, 2, 163 Aromatic systems, planar and non-planar, 1, 203 Aryl halides and related compounds, photochemistry of, 20, 191 Arynes, mechanisms of formation and reactions at high temperatures, 6, I A-Se2 reactions, developments in the study of, 6,63... [Pg.335]

The first clue to the existence of the SrnI mechanism came from product studies both in aliphatic and aromatic cases. It was noticed that in the reaction of benzyl and substituted benzyl chlorides with the 2-nitropropane anion, oxygen alkylation, yielding the oxime and then the aldehyde, occurs exclusively in the case of benzyl chloride and 3-nitrobenzyl chloride, whereas, with 4-nitrobenzyl chloride, the yield of aldehyde is only 6% and the carbon-alkylated (104) product is obtained in 92% yield (Kornblum, 1975). This was interpreted as the result of a competition between 8, 2 (O-alkylation) and S l (C-alkylation) reactions. In the aromatic case, it was observed that the reaction of 5- and 6-halopseudocumenes with KNHj in liquid ammonia (Kim and Bunnett, 1970) forms the 5- and 6-pseudocumi-dines in a ratio which is the same whether the starting compound is the 5- or 6-isomer in the case of the chloro- and bromo-derivatives, as expected from an aryne mechanism (Scheme 9), whereas much more non-rearranged... [Pg.75]

The anion-radical mechanism for these syntheses is based on the following facts. The reactions require photo- or electrochemical initiation. Oxygen inhibits the reactions totally, even with photoirradiation. Indoles are formed from o-iodoaniline only the meta isomer does not give rise to indole. Hence, the alternative aryne mechanism (cine-substitution) is not valid. What remains as a question is the validity of the ion-radical mechanism exclusively to the substitution of the acetonyl group for the halogen atom in o-haloareneamine or also for intramolecular condensation. [Pg.374]

Alkanamines have acid strengths corresponding to Ka values of about 10 33, which means that their conjugate bases are powerfully basic reagents. Therefore they are very effective in causing elimination reactions by the E2 mechanism (Section 8-8) and aromatic substitution by the aryne mechanism (Section 14-6C). The following example illustrates this property in a useful synthesis of a benzenamine from bromobenzene ... [Pg.1120]

The 2- and 4-picolyl anions are phenylated or mesitylated on reaction with chlorobenzene, phenyltri-methylammonium ion and 2-bromomesitylene under stimulation by light or potassium metal. The mechanism of reaction with bromobenzene and iodobenzene is not certain, with die aryne mechanism almost certainly intruding, and with iodobenzene some diarylation of the picolinyl anion results. The reaction of the 2-picolyl anion with 2-bromomesitylene, where an aryne process is impossible, is shown in equation (44). Similar reactions take place between the 4-picolyl anion and 2- or 4-bromopyridine or 2-chloro-quinoline.134... [Pg.472]

Nucleophilic aromatic substitutions are more difficult in principle. Here, three types of mechanisms are discussed (Scheme 6.3) addition-elimination mechanism (SNAr), elimination-addition mechanism (SN1) and aryne mechanism. In addition, radical-type mechanisms are also possible. [Pg.177]

A variation on the aryne mechanism for nucleophilic aromatic substitution (discussed above, Scheme 2.8) is the SrnI mechanism (see also Chapter 10). Product analysis, with or without radical initiation or radical inhibition, played a crucial role in establishing a radical anion mechanism [21]. The four isomeric bromo- and chloro-trimethylbenzenes (23-X and 25-X, Scheme 2.9) reacted with potassium amide in liquid ammonia, as expected for the benzyne mechanism, giving the same product ratio of 25-NH2/23-NH2 = 1.46. As the benzyne intermediate (24) is unsymmetrical, a 1 1 product ratio is not observed. [Pg.28]

Arynes, mechanisms of formation and reactions at high temperatures, 6, 1 A-Se2 reactions, developments in the study of, 6, 63... [Pg.349]

Finally, this interconversion may also be done by photoassisted reaction with amide ion194,195 or by reaction with hydrazine followed by reduction with Raney nickel in water160,172. The reaction with amide ion may proceed via an aryne mechanism and thus cme-substitution may result this may be used to synthetic advantage (equation 23)196. [Pg.717]

When biphenyl is either chlorinated or brominated in the presence of iron(III) or antimony(V)chloride, 2- and 4-halogenated biphenyls are formed. Their hydrolysis, however, requires, strong conditions such as heating in fused potassium/sodium hydroxide with copper at 250-300°. This can cause some isomerization to 3-hydroxy-biphenyl via an aryne mechanism 67). [Pg.109]


See other pages where Aryne mechanism is mentioned: [Pg.139]    [Pg.140]    [Pg.157]    [Pg.72]    [Pg.861]    [Pg.759]    [Pg.360]    [Pg.653]    [Pg.452]    [Pg.472]    [Pg.477]    [Pg.178]    [Pg.61]    [Pg.75]    [Pg.360]   
See also in sourсe #XX -- [ Pg.178 ]

See also in sourсe #XX -- [ Pg.165 ]




SEARCH



Aryne

© 2024 chempedia.info