Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quinones, applications synthesis

The synthetic procedure described is based on that reported earlier for the synthesis on a smaller scale of anthracene, benz[a]anthracene, chrysene, dibenz[a,c]anthracene, and phenanthrene in excellent yields from the corresponding quinones. Although reduction of quinones with HI and phosphorus was described in the older literature, relatively drastic conditions were employed and mixtures of polyhydrogenated derivatives were the principal products. The relatively milder experimental procedure employed herein appears generally applicable to the reduction of both ortho- and para-quinones directly to the fully aromatic polycyclic arenes. The method is apparently inapplicable to quinones having an olefinic bond, such as o-naphthoquinone, since an analogous reaction of the latter provides a product of undetermined structure (unpublished result). As shown previously, phenols and hydro-quinones, implicated as intermediates in the reduction of quinones by HI, can also be smoothly deoxygenated to fully aromatic polycyclic arenes under conditions similar to those described herein. [Pg.167]

Dioxo-2, 4, 5 -trimethylcyclohexa-l, 4 -diene)-3,3-dimetbylpropi-onamide (Q). The application of this well-known acid [3-(3, 6 -dioxo-2, 4, 5 -trimethylcyclohexa-l, 4 -diene)-3,3-dimethylpropionic acid] to protection of the amino function for peptide synthesis has been examined. Reduction of the quinone with sodium dithionite causes rapid trimethyl lock -facilitated ring closure with release of the amine. [Pg.562]

The general applicability of this type of synthesis of quinone diazides is nevertheless limited since, depending on the type and number of substituents in the 2-, 4-, and 6-positions of benzenediazonium ions, either hydroxy-de-diazoniation (reaction A in Scheme 2-20) or nucleophilic substitution of one of the groups in the 2-, 4-, or 6-position (reaction B) will predominate. It is difficult to predict the ratio of the two reactions in a specific case. This is exemplified by two investigations carried... [Pg.28]

Photo-de-diazoniation has found relatively little application in organic synthesis, as is clearly evident from the annual Specialist Periodical Reports on Photochemistry published by the Royal Society of Chemistry. Since the beginning of these reports (1970) they have contained a section on the elimination of nitrogen from diazo compounds, written since 1973 by Reid (1990). In the 1980s (including 1990), at least 90% of each report is concerned with dediazoniations of diazoalkanes and non-quinon-oid diazo ketones, the rest being mainly related to quinone diazides and only occasionally to arenediazonium salts. [Pg.281]

Most of the early applications of palladium to indole chemistry involved oxidative coupling or cyclization using stoichiometric Pd(II). Akermark first reported the efficient oxidative coupling of diphenyl amines to carbazoles 37 with Pd(OAc)2 in refluxing acetic acid [45]. The reaction is applicable to several ring-substituted carbazoles (Br, Cl, OMe, Me, NO2), and 20 years later Akermark and colleagues made this reaction catalytic in the conversion of arylaminoquinones 38 to carbazole-l,4-quinones 39 [46]. This oxidative cyclization is particularly useful for the synthesis of benzocarbazole-6,11-quinones (e.g., 40). [Pg.83]

In the quinone imine cyclization of iron complexes to carbazoles, the arylamine-substituted tricarbonyl(ri -cyclohexadiene)iron complexes 571 are chemoselectively oxidized to a quinone imine 574 prior to cyclodehydrogenation. This mode of cyclization is particularly applicable for the total synthesis of 3-oxygenated tricyclic carbazole alkaloids (Scheme 5.25). [Pg.206]

Tremendous effects have been made in studying the possibilities for the electrochemical generation and regeneration of inorganic redox agents like Cr(VI) V(V), Mn(III) Ce(IV) , and Co(in) and their application in the oxidation of aromatics. These studies are mainly performed by means of three types of reactions side-chain oxidations to form benzaldehydes, side-chain oxidations to generate benzoic acids, and nuclear oxidations for the synthesis of quinones (Scheme 1). [Pg.12]

It has been reported that vitamin Kj and several of the vitamin K2 homologues are capable of restoring electron transport in solvent-extracted or irradiated bacterial and mitochondrial preparations. Other reports suggest that vitamin K is concerned with the phosphorylation reactions accompanying oxidative phosphorylation The capacity of these compounds to exist m several forms, e.g., quinone, quinol. chromanol, etc., appears to strengthen the proposal that links them to oxidative phosphorylation. Information has suggested that vitamin K acts to induce prothrombin synthesis. Since prothrombin has been shown to be synthesized only by liver parenchymal cells m the dog, it would appear that the proposed role for vitamin K is not specific for only prothrombin synthesis, but applicable to other proteins. [Pg.1706]

Under different reaction conditions, phenols can be oxidized to p-quinones (equations 272600-602 and 273603), but in the case of phenol itself, insufficient selectivity has prevented, as yet, the commercial application of this potentially important synthesis of p-benzoquinone and hydroquin-one. The selectivity of p-benzoquinone, or p-quinol formation can be increased at the expense of oxidative coupling products by using a large excess of the copper reagent [Cu4Cl402(MeCN)3 or CuCl + 02 in MeCN] with respect to the phenolic substrate.604 The suggested mechanism involves the oxidation of the phenoxide radical (189) by a copper(II)-hydroxo species to p-quinol (190) which can rearrange (for R2 = H) to hydroquinone (191 Scheme 14), which is readily oxidizable to p-quinone.6... [Pg.392]

During my early years as an assistant professor at the University of Kentucky, I demonstrated the synthesis of a simple quinone methide as the product of the nucleophilic aromatic substitution reaction of water at a highly destabilized 4-methoxybenzyl carbocation. I was struck by the notion that the distinctive chemical reactivity of quinone methides is related to the striking combination of neutral nonaromatic and zwitterionic aromatic valence bond resonance structures that contribute to their hybrid resonance structures. This served as the starting point for the interpretation of the results of our studies on nucleophile addition to quinone methides. At the same time, many other talented chemists have worked to develop methods for the generation of quinone methides and applications for these compounds in organic syntheses and chemical biology. The chapter coauthored with Maria Toteva presents an overview of this work. [Pg.268]

The oxidative activation of arenes is a powerful and versatile synthetic tactic that enables dearomatization to give useful synthons. Central to this chemistry are hydroxylated arenes or arenols, the phenolic functions of which can be exploited to facilitate the dearomatizing process by two-electron oxidation. Suitably substituted arenols can hence be converted, with the help of oxygen- or carbon-based nucleophiles, into ortho-quinone monoketals and ortho-quinols. These 6-oxocyclohexa-2,4-dienones are ideally functionalized for the construction of many complex and polyoxygenated natural product architectures. Today, the inherent and multiple reactivity of arenol-derived ortho-quinone monoketals and ortho-quinols species is finding numerous and, in many cases, biomimetic applications in modern organic synthesis. [Pg.539]

Thus, Ghosez et al. were successful in showing that A,iV-dimethyl hydrazones prepared from a,/3-unsaturated aldehydes react smoothly in normal electron demand Diels-Alder reactions with electron-deficient dienophiles [218, 219]. Most of the more recent applications of such 1-aza-l,3-butadienes are directed towards the synthesis of biologically active aromatic alkaloids and azaanthra-quinones [220-224] a current example is the preparation of eupomatidine alkaloids recently published by Kubo and his coworkers. The tricyclic adduct 3-19 resulting from cycloaddition of naphthoquinone 3-17 and hydrazone 3-18 was easily transformed to eupomatidine-2 3-20 (Fig. 3-6) [225]. [Pg.49]

In chapter 7, special emphasis has been placed on the synthesis of representative polycyclic quinones and their photochromic behavior, including the spectral, kinetic, and fatigue characteristics of such systems. Potential applications are focused on recording and multiplication of images, optical memories, and gradation masking. [Pg.7]

Indole derivatives have been prepared by reaction of 2-bromoanilines with enamines in the presence of palladium(II) acetate127, reductive cyclization onto a nitro group128, or by the same type of cycloaddition that allows the synthesis of benzofuranols (see above) but using / -quinone diimides129. An example of an application of this latter method is the regioselective nucleophilic addition of 1-piperidino-l-propene (245) to the selectively activated AT4-(phenylsulfonyl)-p-quinone diimide 244 (equation 51)130. Fur-... [Pg.1021]


See other pages where Quinones, applications synthesis is mentioned: [Pg.127]    [Pg.22]    [Pg.85]    [Pg.37]    [Pg.83]    [Pg.116]    [Pg.46]    [Pg.65]    [Pg.98]    [Pg.32]    [Pg.94]    [Pg.141]    [Pg.138]    [Pg.30]    [Pg.30]    [Pg.127]    [Pg.710]    [Pg.128]    [Pg.23]    [Pg.85]    [Pg.3]    [Pg.477]    [Pg.676]    [Pg.540]    [Pg.545]    [Pg.558]    [Pg.568]    [Pg.127]    [Pg.425]    [Pg.160]    [Pg.196]    [Pg.200]    [Pg.113]    [Pg.487]   
See also in sourсe #XX -- [ Pg.268 , Pg.269 , Pg.270 , Pg.271 , Pg.272 , Pg.310 , Pg.311 ]




SEARCH



Applications quinones

Quinones synthesis

Synthesis and Applications of Quinone Monoketals

Synthesis applications

© 2024 chempedia.info