Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quinidines catalysts

Ahuja, R. R., Bhole, S. I., Bhonglc, N. N., Gogte, V. N., and Natu, A. A., Optical induction. 111. Some mechanistic studies on the reaction between thiophenol and a.(3-unsatur-ated ketones using quinine-quinidine catalysts, Indian J. Chem.. 2IB, 299, 1982. [Pg.83]

The reactions afforded excellent enantioselectivity (up to 98% ee) and high yields for diverse donors, including malonate esters, ketoesters, 1,3-diketones, nitroesters, and 1,3-dinitriles (87a-f). In contrast to the results obtained with thiourea catalysts, the natural quinidine catalyst afforded only the racemic product (Scheme 9.31). The... [Pg.268]

Scheme 15.4). This method works efficiently with several ketimines to produce the corresponding 3-amino-2-oxoindolin-3-yl-phosphonates in excellent yields with high enantioselectivity (up to 98% ee). Slightly inferior results were obtained with the corresponding quinidine catalyst. [Pg.47]

In 2008, Itoh and co-workers [66] successfully developed the first organocata-lyzed a-aminoxylation of oxyindoles using a cinchonidine-derived phase-transfer catalyst 29 and molecular oxygen (Scheme 12.7). In 2010, Barbas III and co-workers [67] designed a new dimeric quinidine catalyst 28 to synthesize the same kind of... [Pg.438]

The reaction of the aldehyde 219 with ketene, generated from acetyl chloride and i-Pr2NEt in the presence of a chiral quinidine catalyst, affords the /3-lactone 220 in 85 % yield (94 % e,e). ... [Pg.274]

Also, reaction of ketene with 4-nitrophenyl trichloroacetophenone at —25°C in the presence of a quinidine catalyst gives the corresponding /3-lactone in 95 % yield (89 % e,e). Ketene reacts with aldehydes in the presence of oxazaborolidine catalysts to give the j3-lactones in an enantioselective manner The enantioselective [2+2] cycloaddition of silylketenes 221 with a-ketoesters affords the cycloadducts 222 in 86-99 % yield (high e,es) . [Pg.274]

Addition of p-tert-butylthiophenol 178 to the racemic furanone 168 in dry toluene, and in the presence of quinidine as a chiral catalyst, provided (/ )-168 together with the Michael adduct 179. The enantiomeric excess of the recovered furanone (R)-168 was determined via the addition of (/)-Q -methylbenzylamine This amine addition showed complete diastereofacial control to give the adduct 180 in quantitative yield (Scheme 50) (94T4775). [Pg.137]

Azirines can be prepared in optically enriched form by the asymmetric Neber reaction mediated by Cinchona alkaloids. Thus, ketoxime tosylates 173, derived from 3-oxocarhoxylic esters, are converted to the azirine carboxylic esters 174 in the presence of a large excess of potassium carbonate and a catalytic amount of quinidine. The asymmetric bias is believed to be conferred on the substrate by strong hydrogen bonding via the catalyst hydroxyl group <96JA8491>. [Pg.61]

Further evidence for the formation of intermediate compounds in catalytic reactions is afforded by the observation (a) that optically active camphor is formed from optically inactive (racemic) camphor carboxylic acid in the presence of the d- or /-forms of quinine, quinidine or nicotine and (6) that optically active bases, e.g., quinidine, catalyze the synthesis of optically active mandelonitrile from benzaldehyde and hydrocyanic acid.10 These results hardly admit of any other interpretation than the intermittent production of a catalyst-reactant compound. [Pg.66]

The structures of quinine, cinchonidine, quinidine, and cinchonine are shown in Figure 3. Other workers (16,17) have discussed these alkaloids and their use as catalysts in some detail. An excellent discussion of cinchona-alkaloid-catalyzed reactions prior to 1968 was given by Pracejus (18). In this section we discuss only four aspects of these reactions. [Pg.91]

Quinine and quinidine, as well as cinchonidine and cinchonine, are diastereo-meric pairs. However, at the critical sites—the P-hydroxyamine portions of the molecules—they are enantiomeric. Thus if quinine is used as the chiral catalyst in an asymmetric transformation (i.e., with one enantiomer being formed in excess), the other enantiomer is formed in excess when quinidine is used. Table 2 gives a representative example, the thiol addition reaction (19). [Pg.91]

These reactions, performed many times, show, in addition to the reversal of the absolute configuration of the product with the change in the configuration at C-8 and C-9 of the alkaloids, a small but reproducible difference in the e.e. of the product. It is evident that the diastereomeric nature of quinine vs. quinidine and cinchonidine vs. cinchonine expresses itself via small but important energy differences in the best fits of the transition states. Noteworthy in this respect is the fine work of Kobayashi (20), who observed larger differences (in the e.e. s of products) when the diastereomeric cinchona alkaloids were used as catalysts after having been copolymerized with acrylonitrile (presumably via the vinyl side chain of the alkaloids). [Pg.91]

We have studied this reaction in considerable detail (88) and have found that when one uses quinine (eq. [25]) or any one of the chiral bases, a variety of aldehydes react with ketene to form the corresponding p-lactones in excellent chemical and nearly quantitative enantiomeric yields. Equation [25] exemplifies the reaction. Note that mild basic hydrolysis of the lactone furnishes a trichlo-rohydroxy acid that was prepared earlier by McKenzie (89). If one uses quinidine as catalyst, the process furnishes the natural (S)-malic acid. Note that ketene first acylates the free hydroxyl group of quinine, so that the actual catalyst is the alkaloid ester. [Pg.123]

The cycloaddition of aldehydes and ketones with ketene under the influence of quinine or quinidine produce chiral 2-oxetanones [46,47]. Solvolytic cleavage of the oxetanone, derived from chloral, and further solvolysis of the trichloromethyl group leads to (5)- and (R)-malic acids with a 98% ee [46] (the chirality of the product depends on the configuration of the catalyst at C-8 and, unlike other alkaloid-induced reactions, it is apparently independent of the presence of the hydroxyl group). No attempts have been made to catalyse the reaction with chiral ammonium salts. [Pg.529]

Sharpless stoichiometric asymmetric dihydroxylation of alkenes (AD) was converted into a catalytic reaction several years later when it was combined with the procedure of Upjohn involving reoxidation of the metal catalyst with the use of N-oxides [24] (N-methylmorpholine N-oxide). Reported turnover numbers were in the order of 200 (but can be raised to 50,000) and the e.e. for /rara-stilbene exceeded 95% (after isolation 88%). When dihydriquinidine (vide infra) was used the opposite enantiomer was obtained, again showing that quinine and quinidine react like a pair of enantiomers, rather than diastereomers. [Pg.312]

Ricci et al. [85] reported the use of a quinidine-derived chiral catalyst in the asymmetric addition of nitromethane to iV-Boc imine 40. At around the same time, S chans and co-workers used a dihydroquinidine-derive chiral thiourea DHQD-134 applicable to nitromethane and nitroethane 149 [86]. The application of nitroethane conveniently generates a tertiary stereogenic center in the P-nitroamine product 151. The methodology presented by Schaus is also applicable to novel... [Pg.170]

Quinine/Quinidine-Based Catalysts (e.g., Cinchona Alkaloids). 265... [Pg.233]

Fujimoto has also described an asymmetric benzoylation system that is effective for ASD of cyclic meso-1,3- and 1,4-diols and which employs phosphinite derivative of quinidine 66 as the catalyst (Fig. 15) [224, 225]. [Pg.272]

Certain alkaloids are able to effect asymmetric induction during a reduction process at a mercury cathode even when present in low concentration in an aqueous alcohol acetate buffer. Asymmetric induction under these conditions was first observed [39] during the conversion of 4-methylcoumarin to 4-methyl-3,4-dihydro-coumariit (sec page 60). Induction results because a layer of alkaloid is strongly adsorbed on the electrode surface thus permitting transfer of a proton to a carban-ion intermediate m an asymmetric environment. Up to 16% asymmetric induction has been achieved in 1-phenylethanol recovered from reduction of acetophenone in a buffer of pH 4.8 containing a low concentration of quinidine. lire pinacol formed simultaneously shows no optical activity. However quinidine is itself reduced at the potential employed so that the actual catalyst for the asymmetric process is not defined [34,40],... [Pg.337]

The Soos group, in 2005, prepared the first thiourea derivatives from the cinchona alkaloids quinine QN (8S, 9R-121), dihydroquinidine DHQD (8S, 9S-122), C9-epi-QN (8S, 9P-123), and quinidine QD (SR, 9R-124) via an experimentally simple one-step protocol with epimerization at the C9-position of the alkaloid starting material (Figure 6.39) [278]. The catalytic efficiency of these new thiourea derivatives and also of unmodified QN and C9-epi-QN was evaluated in the enan-tioselective Michael addition [149-152] of nitromethane to the simple model chal-cone 1,3-diphenyl-propenone resulting in adduct 1 in Scheme 6.119. After 99h reaction time at 25 °C in toluene and at 10 mol% catalyst loading QN turned out to be a poor catalyst (4% yield/42% ee (S)-adduct) and C9-epi-QN even failed to accelerate the screening reaction. In contrast, the C9-modified cinchona alkaloid... [Pg.261]

C9-epi-122 98% conv. (99% ee) after 30h, respectively (Figure 6.40). This structure-efficiency relationship supported the results already published by the Soos group for quinine- and quinidine-derived thioureas (Figure 6.39) [278]. C9-epimeric catalysts were found to be remarkably more efficient in terms of rate acceleration and stereoinduction than the analogs of natural cinchona alkaloid stereochemistry. This trend was also observed for the corresponding (thio)ureas derived from DHQD as shown by the experimental results in Figure 6.40 [279]. [Pg.264]

A cursory examination of the Cinchona catalysts used in O Donnell-type alkylation [90] of methyl (diphenylimino)glycinate (Appendix 7.A) reveals that only minor modifications to the Cinchona scaffold are required for the synthesis of a catalyst the 8-substituent on the quinuclidine core may either be a vinyl group (as in the parent alkaloids, quinine and quinidine) or can be an ethyl substituent, introduced by hydrogenation. The quinoline system at the 2-position ofthe quinuclidine ring can be unsubstituted if the catalyst is derived from quinine or quinidine, but can contain a 6-methoxy group ifit is derived from cinchonine or cinchonidine. The 3-position ofthe quinuclidine ring may contain either a hydroxy group or else a vinyloxy or benzyloxy... [Pg.174]

Aldehydes, ketones, and quinones react with ketenes to give p-lactones, diphenylketene being used most often. The reaction is catalyzed by Lewis acids, and without them most ketenes do not give adducts because the adducts decompose at the high temperatures necessary when no catalyst is used. When ketene was added to chloral Cl3CCHO in the presence of the chiral catalyst (+ )-quinidine, one enantiomer of the p-lactone was produced in 98% enantiomeric excess.777 Other di- and trihalo aldehydes and ketones also give the reaction enantioselectively, with somewhat lower ee values.778 Ketene adds to another molecule of itself ... [Pg.976]

Cinchona alkaloids, naturally ubiquitous /3-hydroxy tertiary-amines, are characterized by a basic quinuclidine nitrogen surrounded by a highly asymmetric environment (12). Wynberg discovered that such alkaloids effect highly enantioselective hetero-[2 -I- 2] addition of ketene and chloral to produce /3-lactones, as shown in Scheme 4 (13). The reaction occurs catalytically in quantitative yield in toluene at — 50°C. Quinidine and quinine afford the antipodal products by leading, after hydrolysis, to (S)- and (/ )-malic acid, respectively. The presence of a /3-hydroxyl group in the catalyst amines is not crucial. The reaction appears to occur... [Pg.366]

The increase in heart muscle excitability induced by some natural quinuclidine derivatives (quinidine, ajmaline), suggesting pharmacological activity of some synthetic quinuclidine compounds and the possibility of using quinuclidines as catalysts for production of polymers,17 stimulated further interest in the ring system. [Pg.475]

The asymmetric hydrogenation of C—O bonds have now been achieved in optical yields up to 95%, rivalling the performance of alkenes. Here also, rhodium complexes have been used almost exclusively, but some success has been obtained with cobalt catalysts. Using [Co(HDMG)2] in presence of optically active bases, benzil could be reduced to benzoin (equation 54) in an optical yield of 78%. Quinine or quinidine were the chiral bases employed. The best optical yields were obtained with quinine (60). It was found that when benzylamine was also present, the rate of hydrogenation was greatly enhanced without any decrease in the optical yield.276... [Pg.257]


See other pages where Quinidines catalysts is mentioned: [Pg.168]    [Pg.181]    [Pg.347]    [Pg.1198]    [Pg.310]    [Pg.525]    [Pg.34]    [Pg.406]    [Pg.168]    [Pg.181]    [Pg.347]    [Pg.1198]    [Pg.310]    [Pg.525]    [Pg.34]    [Pg.406]    [Pg.1249]    [Pg.814]    [Pg.97]    [Pg.530]    [Pg.25]    [Pg.335]    [Pg.265]    [Pg.255]    [Pg.255]    [Pg.256]    [Pg.198]   
See also in sourсe #XX -- [ Pg.126 , Pg.128 ]




SEARCH



Quinidin

© 2024 chempedia.info