Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum wells synthesis

The relative solubility of inorganic salts can be used to prepare more complex structures by such methods and examples indude CdS/ZnS [24], CdSe/AgS [25] HgS/CdS [26], PbS/CdS [27, 28], CdS/HgS [29], ZnS/CdSe [30] and ZnSe/CdSe [31] particles. The main constraints on the production of such structures involve the relative solubility of the solids and lattice mismatches between the phases. The preparation of quantum dot quantum well systems such as CdS/HgS/CdS [32, 33], has also been reported, in which a HgS quantum well of 1-3 monolayers is capped by 1-5 monolayers of CdS. The synthesis grows less soluble HgS on CdS (5.2 nm) by ion-replacement. The solubility products of CdS and HgS are 5 X 10 and 1.6 x 10 respectively. The authors reported fluorescence measurements in which the band edge emission for CdS/HgS/CdS is shifted to lower energy values with increasing thickness of the HgS well [33]. [Pg.20]

Charge carriers in semiconductors can be confined in one spatial dimension (ID), two spatial dimensions (2D), or three spatial dimensions (3D). These regimes are termed quantum films, quantum wires, and quantum dots as illustrated in Fig. 9.1. Quantum films are commonly referred to as single quantum wells, multiple quantum wells or superlattices, depending on the specific number, thickness, and configuration of the thin films. These structures are produced by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) [2j. The three-dimensional quantum dots are usually produced through the synthesis of small colloidal particles. [Pg.264]

The latest development in the subfield of surface-modified semiconductor nanocrystals is the synthesis of three-layered colloidal particles [55-58]. The novel structures consist of a size-quantized semiconductor particle acting as the core spherically covered by several monolayers of another semiconductor material, which by themselves are surrounded by several monolayers of, again, the core material acting as the outermost shell. These particles are called quantum dot quantum wells (QDQWs) or, metaphorically, nano-onions. The more scientific naming is motivated by the analogy to real quantum wells, which are semiconductor structures with alternating layers of two semiconductor materials exhibiting quantum confinement in one dimension in at least one of the materials. [Pg.136]

With the advent of sophisticated techniques such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MCXTVD), synthesis of heterostructure such as multiple quantum wells or superlattices with precise interface layer down to one monolayer have been routinely possible. This not only allows modulation of electronic properties such as carrier confinement and concentration profile, but also optical confinement and wave guiding properties with appropriate choice of refractive indices of the materials. Such precise controls over the growth and material properties have opened the field of band gap engineering . [Pg.1893]

Chemists have synthesized a spectacular array of submicron- and nano-particles with well-defined size and atomic structure and very special properties. Examples include CdSe quantum dots and novel spheres and rods. Transport enters the picture via fundamental studies of the physical processes that affect the synthesis, which must be understood for even modest scale-up from the milligram level. Likewise, processes for assembling fascinating face-centered-cubic crystals or ordered multilayers must concentrate on organizing the particles via flow, diffusion, or action of external fields. Near-perfection is possible but requires careful understanding and control of the forces and the rates. [Pg.51]

In this chapter, the first section will focus on the designs of different structures of DDSNs. The basic synthesis methods of pure silica nanoparticles will be briefly summarized at the beginning. The general methods for doping dye molecules into a silica matrix will then be covered followed by the introduction of several DDSN designs. The second section will be a major focus of this chapter. Various advantageous properties of DDSNs will be discussed. These discussions will involve reaction kinetics, solubility, photostability, and fluorescence intensity including quantum yield and lifetime, as well as toxicity. With the rapid development of DDSNs, more features and functionalities of DDSNs are expected in the near future. [Pg.231]


See other pages where Quantum wells synthesis is mentioned: [Pg.146]    [Pg.67]    [Pg.551]    [Pg.565]    [Pg.203]    [Pg.153]    [Pg.153]    [Pg.281]    [Pg.88]    [Pg.513]    [Pg.293]    [Pg.1031]    [Pg.253]    [Pg.1031]    [Pg.92]    [Pg.120]    [Pg.150]    [Pg.11]    [Pg.24]    [Pg.188]    [Pg.4]    [Pg.165]    [Pg.239]    [Pg.195]    [Pg.5]    [Pg.26]    [Pg.150]    [Pg.219]    [Pg.373]    [Pg.261]    [Pg.504]    [Pg.150]    [Pg.516]    [Pg.314]    [Pg.335]    [Pg.16]    [Pg.454]    [Pg.171]    [Pg.433]    [Pg.5]    [Pg.220]    [Pg.167]    [Pg.61]    [Pg.177]   


SEARCH



Quantum wells

© 2024 chempedia.info