Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum physics wave mechanics

Atto-engineering for more than a whole century is in permanent and almost infinite development. Theoretical background is related to the surface physics and chemistry, quantum and wave mechanics, and quantum electrodynamics. Discrete and constrained discrete models are convenient for describing related events. Tools and equipment are nano- and atto-dispersions and beams (demons, ions, phonons, infons, photons, electrons), ultra-thin films and membranes, fullerenes and bucky tubules, Langmuir-Blodgett systems, molecular machines, nano-electronic devices, and various beam generators. Output is, generally, demonstrated as finely dispersed particles (plasma, fluosol-fog, fluosol-smoke, foam, emulsion, suspension, metal, vesicle, dispersoid). [Pg.4]

Quantum chemistry would become the (necessary) intermediary in the metamorphosis of the current scientist into the scientist of the future, who was idealized as neither a physicist nor a chemist, but a sort of hybrid of the two. Such a scientist would transcend the typical physicist or chemist and needed training in empirical chemistry, in physical chemistry, in metallurgy, in crystal structure, as well as in theoretical physics, including mechanics and electromagnetic theory, and in particular in quantum theory, wave mechanics, the structure of atoms and molecules, in thermodynamics, statistical mechanics, and finally in what Slater called chemical physics. [Pg.114]

According to modern science, all various kinds of matter consist essentially of a few types of elementary particles combined together in different ways. Since these particles do not obey the laws of classical physics but the laws of modern wave mechanics, the problem of the constitution of matter is a quantum-mechanical many-particle problem of a much higher degree of complexity than even the famous classical three-body problem. [Pg.209]

The harmonic oscillator is an important system in the study of physical phenomena in both classical and quantum mechanics. Classically, the harmonic oscillator describes the mechanical behavior of a spring and, by analogy, other phenomena such as the oscillations of charge flow in an electric circuit, the vibrations of sound-wave and light-wave generators, and oscillatory chemical reactions. The quantum-mechanical treatment of the harmonic oscillator may be applied to the vibrations of molecular bonds and has many other applications in quantum physics and held theory. [Pg.106]

A good deal of this work had no impact in the development of models of molecular structure and the elucidation of reaction mechanisms one reason was Perrin s own coolness to quantum wave mechanics. 108 Another, according to Oxford s Harold Thompson, who studied with Nernst and Fritz Haber, was that researchers like Lecomte "did not know enough chemistry he was a physicist." 109 Perrin, too, approached physical chemistry as a physicist, not as a chemist. He had little real interest or knowledge of organic chemistry. But what made his radiation hypothesis attractive to many chemists was his concern with transition states and the search for a scheme of pathways defining chemical kinetics. [Pg.147]

In Leipzig, Slater pursued the application of wave mechanics to electrons in simple molecules ("quantum chemistry") and in metals ("solid-state physics"). He wrote Percy Bridgman,... [Pg.261]

Coulson s generation of quantum theoretical chemists was struck by the fact that the mathematical physics of wave mechanics did not result in fundamental breakthroughs or discoveries in chemistry. As we have seen, Mulliken claimed that his initial work in quantum mechanics "interpreted," rather than "discovered," chemical facts. Alberte Pullman commented in 1970 ... [Pg.294]

It is then quite understandable why, without the necessary mathematical machinery, the relevant concepts cannot be properly grasped. On the other hand, the mathematical disguise that is characteristic of quantum-chemistry courses makes both teachers and students pay more attention to the complexities of the mathematics (the tools, the trees ) and lose the physics (the actual world, the forest ). Although mathematics is essential for a deep understanding of quantum chemistry, the underlying physical picture and its connection with mathematics are equally important. AOs, MOs and related concepts derive from SchrOdinger s wave mechanics, which is an approximation to nature. According to Simons (96), "orbital concepts are merely aspects of the best presently available model they are not real in the same sense that experimental observations are. ... [Pg.92]

Bom coined the term "Quantum mechanics and in 1925 devised a system called matrix mechanics, which accounted mathematically for the posidon and momentum of the electron in the atom. He devised a technique called the Born approximation in scattering theory for computing the behavior of subatomic particles which is used in high-energy physics. Also, interpretation of the wave function for Schrodinger s wave mechanics was solved by Born who suggested that the square of the wave function could be understood as the probability of finding a particle at some point in space, For this work in quantum mechanics. Max Bom received the Nobel Prize in Physics in 1954,... [Pg.252]

A new quantum theory called wave mechanics (as formulated by Schrodinger) or quantum mechanics (as formulated by Heisenberg, Born and Dirac) was developed in 1926. This was immediately successful m accounting for a wide variety of experimental observations, and there is little doubt that, in principle, the theory is capable of describing any physical system. A strange feature of the new mechanics, however, is that nowhere does the path or velocity of the electron enter the description. In fact it is often impossible to visualize any classical motion that could be consistent with the quantum mechanical picture of the atom,... [Pg.1164]

PAULI, WOLFCANC ERNST (1900-1958). Pauli was an Austrian theorerical physicist, After WWT1. he became an American citizen. When just 20 years of age he wrote The Theory of Relativity." Later he wrote articles on Quantum Theoiy and Principles of Wave Mechanics." He is most remembered for formulating the Pauli exclusion principle- . This principle says that two electrons in an atom can never exist in the same state, This is important concept for modern physics. Pauli was awarded the Nobel Prize in physics in 1945 for this discovery. [Pg.1220]

The next great development in physics was again an outgrowth of Einstein s ideas. Dirac was not satisfied with the fact that early quantum mechanics did not fit into the framework of relativity theory, The velocities of electrons in ordinary atoms are so small compared to the speed of light that the neglect of relativity theory did not matter much. Rut what about wave mechanics of particles that move much faster Dirac was able in 1927 to unite relativity with quantum mechanics. [Pg.1394]

Molecular systems exist in discrete quantum states, the study of which lies in the realm of molecular structure and wave mechanics. Transitions between quantum states occur either by absorption or emission of radiation (spectroscopy) or by collisional processes. There are two main types of collisional transitions which are important in chemical physics these are first, reactive processes in which chemical rearrangement takes place (reaction kinetics), and secondly collisions in which the energy distribution is changed without overall chemical reaction. It may therefore be concluded that the energy transfer processes discussed here are of fundamental importance in all molecular systems, and that the subject, like molecular structure, is enormously varied and complex. [Pg.182]

Once the mathematical formalism of theoretical matrix mechanics had been established, all players who contributed to its development, continued their collaboration, under the leadership of Niels Bohr in Copenhagen, to unravel the physical implications of the mathematical theory. This endeavour gained urgent impetus when an independent solution to the mechanics of quantum systems, based on a wave model, was published soon after by Erwin Schrodinger. A real dilemma was created when Schrodinger demonstrated the equivalence of the two approaches when defined as eigenvalue problems, despite the different philosophies which guided the development of the respective theories. The treasured assumption of matrix mechanics that only experimentally measurable observables should feature as variables of the theory clearly disqualified the unobservable wave function, which appears at the heart of wave mechanics. [Pg.89]

The suspicion that Schrodinger s interpretation of wave mechanics was suppressed and rejected by quantum physicists for non-scientific reasons, is inescapable. Because of this inherent bias the form of wave mechanics which became established as the basis of theoretical chemistry has, understandably, never been assessed independently for this purpose. The point electron that jumps between quantum states with statistical probability fails to explain chemical behaviour with the same authority that it enjoys in physics. Nevertheless, the Schrodinger alternative is dismissed out of hand by chemists. A typical expert on quantum chemistry declares [33] ... [Pg.97]

It is interesting to note that the Gottingen school, who later developed matrix mechanics, followed the mathematical route, while Schrodinger linked his wave mechanics to a physical picture. Despite their mathematical equivalence as Sturm-Liouville problems, the two approaches have never been reconciled. It will be argued that Schrodinger s physical model had no room for classical particles, as later assumed in the Copenhagen interpretation of quantum mechanics. Rather than contemplate the wave alternative the Copenhagen orthodoxy preferred to disperse their point particles in a probability density and to dress up their interpretation with the uncertainty principle and a quantum measurement problem to avoid any wave structure. [Pg.327]

The mathematical treatment of the Rutherford-Bohr atom was especially productive in Denmark and Germany. It led directly to quantum mechanics, which treated electrons as particles. Electrons, however, like light, were part of electromagnetic radiation, and radiation was generally understood to be a wave phenomenon. In 1924, the French physicist Prince Louis de Broglie (1892-1987), influenced by Einstein s work on the photoelectric effect, showed that electrons had both wave and particle aspects. Wave mechanics, an alternative approach to quantum physics, was soon developed, based on the wave equation formulated in 1926 by the Austrian-born Erwin Schrodinger (1887-1961). Quantum mechanics and wave mechanics turned out to be complementary and both were fruitful for an understanding of valence. [Pg.177]

PHYSICAL PRINCIPLES OFTHEQUANTUMTHEORY. Werner Heisenberg. Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of Dirac, Schroedinger, Compton, Wilson, Einstein, etc. 184pp. 5X x 8)4. [Pg.117]

PROBLEMS AND SOLUTIONS IN QUANTUM CHEMISTRY AND PHYSICS, Charles S. Johnson, Jr. and Lee G. Pedersen. Unusually varied problems, detailed solutions in coverage of quantum mechanics, wave mechanics, angular momentum, molecular spectroscopy, scattering theory, more. 280 problems plus 139 supplementary exercises. 430pp. 6)4 x 4W. 65236-X Pa. 10.95... [Pg.117]


See other pages where Quantum physics wave mechanics is mentioned: [Pg.79]    [Pg.527]    [Pg.4]    [Pg.425]    [Pg.5]    [Pg.248]    [Pg.131]    [Pg.458]    [Pg.354]    [Pg.215]    [Pg.24]    [Pg.35]    [Pg.29]    [Pg.254]    [Pg.273]    [Pg.119]    [Pg.120]    [Pg.504]    [Pg.33]    [Pg.1395]    [Pg.248]    [Pg.98]    [Pg.165]    [Pg.114]    [Pg.35]    [Pg.81]    [Pg.85]    [Pg.91]    [Pg.187]    [Pg.307]    [Pg.320]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Physical mechanisms

Wave mechanics

Wave mechanism

Waves mechanical

© 2024 chempedia.info