Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Many-body perturbation

Wormer P E S and Hettema H 1992 Many-body perturbation theory of frequency-dependent... [Pg.212]

Bartlett R J and Silver D M 1975 Many-body perturbation theory applied to eleetron pair eorrelation energies I. Closed-shell first-row diatomie hydrides J. Chem. Rhys. 62 3258-68... [Pg.2197]

Bartlett R J and Purvis G D 1978 Many-body perturbation theory coupled-pair... [Pg.2198]

Bartlett R J and Purvis G D 1978 Many-body perturbation theory coupled-pair many-electron theory and the importance of quadruple excitations for the correlation problem int. J. Quantum Chem. 14 561-81... [Pg.2198]

Highest occupied molecular orbital Intermediate neglect of differential overlap Linear combination of atomic orbitals Local density approximation Local spin density functional theory Lowest unoccupied molecular orbital Many-body perturbation theory Modified INDO version 3 Modified neglect of diatomic overlap Molecular orbital Moller-Plesset... [Pg.124]

Ei=i N F(i), perturbation theory (see Appendix D for an introduetion to time-independent perturbation theory) is used to determine the Ci amplitudes for the CSFs. The MPPT proeedure is also referred to as the many-body perturbation theory (MBPT) method. The two names arose beeause two different sehools of physies and ehemistry developed them for somewhat different applieations. Later, workers realized that they were identieal in their working equations when the UHF H is employed as the unperturbed Hamiltonian. In this text, we will therefore refer to this approaeh as MPPT/MBPT. [Pg.483]

Rayleigh-Schrodinger many-body perturbation theory — RSPT). In this approach, the total Hamiltonian of the system is divided or partitioned into two parts a zeroth-order part, Hq (which has... [Pg.236]

Another approach to electron correlation is Moller-Plesset perturbation theory. Qualitatively, Moller-Plesset perturbation theory adds higher excitations to Hartree-Fock theory as a non-iterative correction, drawing upon techniques from the area of mathematical physics known as many body perturbation theory. [Pg.267]

There are three main methods for calculating electron correlation Configuration Interaction (Cl), Many Body Perturbation Theory (MBPT) and Coupled Cluster (CC). A word of caution before we describe these methods in more details. The Slater determinants are composed of spin-MOs, but since the Hamilton operator is independent of spin, the spin dependence can be factored out. Furthermore, to facilitate notation, it is often assumed that the HF determinant is of the RHF type. Finally, many of the expressions below involve double summations over identical sets of functions. To ensure only the unique terms are included, one of the summation indices must be restricted. Alternatively, both indices can be allowed to run over all values, and the overcounting corrected by a factor of 1/2. Various combinations of these assumptions result in final expressions which differ by factors of 1 /2, 1/4 etc. from those given here. In the present book the MOs are always spin-MOs, and conversion of a restricted summation to an unrestricted is always noted explicitly. [Pg.101]

The idea in perturbation methods is that the problem at hand only differs slightly from a problem which has already been solved (exactly or approximately). The solution to the given problem should therefore in some sense be close to the solution of the already known system. This is described mathematically by defining a Hamilton operator which consists of two part, a reference (Hq) and a perturbation (H )- The premise of perturbation methods is that the H operator in some sense is small compared to Hq. In quantum mechanics, perturbational methods can be used for adding corrections to solutions which employ an independent particle approximation, and the theoretical framework is then called Many-Body Perturbation Theory (MBPT). [Pg.123]

Hubbard, J., Proc. Roy. Soc. London) A240, 539, The description of collective motions in terms of many-body perturbation theory. ... [Pg.353]

Pipek J, Bogar F (1999) Many-Body Perturbation Theory with Localized Orbitals - Kapuy s Approach. 203 43-61... [Pg.237]

Let us now improve our two-body model by allowing the molecule of water to vibrate. A rather straightforward way to achieve the goal is simply to consider the potential energy between the two molecules as a sum of two contributions, one arising from the intermolecular and the second from the intramolecular motions an approximate interaction potential has been reported by Lie and dementi rather recently, where the intramolecular potential was simply taken over from the many body perturbation computation by Bartlett, Shavitt, and Purvis. The potential will henceforth be referred to as MCYL. [Pg.242]

If we except the Density Functional Theory and Coupled Clusters treatments (see, for example, reference [1] and references therein), the Configuration Interaction (Cl) and the Many-Body-Perturbation-Theory (MBPT) [2] approaches are the most widely-used methods to deal with the correlation problem in computational chemistry. The MBPT approach based on an HF-SCF (Hartree-Fock Self-Consistent Field) single reference taking RHF (Restricted Hartree-Fock) [3] or UHF (Unrestricted Hartree-Fock ) orbitals [4-6] has been particularly developed, at various order of perturbation n, leading to the widespread MPw or UMPw treatments when a Moller-Plesset (MP) partition of the electronic Hamiltonian is considered [7]. The implementation of such methods in various codes and the large distribution of some of them as black boxes make the MPn theories a common way for the non-specialist to tentatively include, with more or less relevancy, correlation effects in the calculations. [Pg.39]

I wish to stress that the meaning of the word Hole here is different and far more general than in Many Body Perturbation Theory. Indeed, no specific reference state is required in this definition and the difference between the RO s and the HRO"s follows exclusively from the different order of the creator operators with respect to the annihilator operators in E and in E respectively. [Pg.58]

Ishikawa, Y. and Koc, K. (1997) Relativistic many-body perturbation calculations for open-shell systems. Physical Review A, 56, 1295-1304. [Pg.224]

In ab initio methods (which, by definiton, should not contain empirical parameters), the dynamic correlation energy must be recovered by a true extension of the (single configuration or small Cl) model. This can be done by using a very large basis of configurations, but there are more economical methods based on many-body perturbation theory which allow one to circumvent the expensive (and often impracticable) large variational Cl calculation. Due to their importance in calculations of polyene radical ion excited states, these will be briefly described in Section 4. [Pg.242]

Due to the size of the variational problem, a large Cl is usually not a practicable method for recovering dynamic correlation. Instead, one usually resorts to some form of treatment based on many-body perturbation theory where an explicit calculation of all off-diagonal Cl matrix elements (and the diagonalization of the matrix) are avoided. For a detailed description of such methods, which is beyond the scope of this review, the reader is referred to appropriate textbooks295. For the present purpose, it suffices to mention two important aspects. [Pg.242]


See other pages where Many-body perturbation is mentioned: [Pg.2177]    [Pg.134]    [Pg.136]    [Pg.154]    [Pg.40]    [Pg.123]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.129]    [Pg.14]    [Pg.29]    [Pg.58]    [Pg.241]    [Pg.219]    [Pg.252]    [Pg.194]    [Pg.146]    [Pg.327]    [Pg.174]    [Pg.242]   
See also in sourсe #XX -- [ Pg.236 ]

See also in sourсe #XX -- [ Pg.88 ]




SEARCH



Many-body

© 2024 chempedia.info