Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum absorption spectra

The fluorescent emission for quinine at 450 nm can be induced using an excitation frequency of either 250 nm or 350 nm. The fluorescent quantum efficiency is known to be the same for either excitation wavelength, and the UV absorption spectrum shows that 250 is greater than 350- Nevertheless, fluorescent emission intensity is greater when using 350 nm as the excitation wavelength. Speculate on why this is the case. [Pg.432]

For long (infinite) /am.v-polyacclylene chains, the treatment of quantum lattice fluctuations is very complicated, because many lattice degrees of freedom couple in a non-linear way to the lowest electronic transitions. We have recently shown that for chains of up to 70 CH units, the amount of relevant lattice degrees of freedom reduces to only one or two, which makes it possible to calculate the low-energy part of the absorption spectrum in an essentially exact way [681. It remains a challenge to study models in which both disorder and the lattice quantum dynamics are considered. [Pg.370]

As can be seen, the interference in each pair of lines does not disappear even in the lower order of perturbation theory when off-diagonal elements of the S-matrix are linear in V. In the doublet, which represents the absorption spectrum, pi is the quantum equivalent of Gordon s classical... [Pg.131]

The case of water is particularly convenient because the required high Ka states may be detected in the solar absorption spectrum. However, it is difficult to observe the necessary high vibrational angular momentum states in molecules, which can only be probed by dispersed fluorescence or stimulated emission techniques. On the other hand, it is now possible to perform converged variational calculations on accurate potential energy surfaces, from which one could hope to verify the quantum monodromy and assess the extent to which it is disturbed by perturbations with other modes. Examples of such computed monodromy are seen for H2O in Fig. 2 and LiCN in Fig. 12. [Pg.89]

A surprising observation was made in the first experiments on the flash photolysis of CdS and CdS/ZnS co-colloids Immediately after the flash from, a frequency doubled ruby laser (X = 347.2 nm photon energy, = 3.57 eV) the absorption spectrum of the hydrated electron was recorded. This species disappeared within 5 to 10 microseconds. More recent studies showed that the quantum yield increased... [Pg.143]

The overall OD vibrational distribution from the HOD photodissociation resembles that from the D2O photodissociation. Similarly, the OH vibrational distribution from the HOD photodissociation is similar to that from the H2O photodissociation. There are, however, notable differences for the OD products from HOD and D2O, similarly for the OH products from HOD and H2O. It is also clear that rotational temperatures are all quite cold for all OH (OD) products. From the above experimental results, the branching ratio of the H and D product channels from the HOD photodissociation can be estimated, since the mixed sample of H2O and D2O with 1 1 ratio can quickly reach equilibrium with the exact ratios of H2O, HOD and D2O known to be 1 2 1. Because the absorption spectrum of H2O at 157nm is a broadband transition, we can reasonably assume that the absorption cross-sections are the same for the three water isotopomer molecules. It is also quite obvious that the quantum yield of these molecules at 157 nm excitation should be unity since the A1B surface is purely repulsive and is not coupled to any other electronic surfaces. From the above measurement of the H-atom products from the mixed sample, the ratio of the H-atom products from HOD and H2O is determined to be 1.27. If we assume the quantum yield for H2O at 157 is unity, the quantum yield for the H production should be 0.64 (i.e. 1.27 divided by 2) since the HOD concentration is twice that of H2O in the mixed sample. Similarly, from the above measurement of the D-atom product from the mixed sample, we can actually determine the ratio of the D-atom products from HOD and D2O to be 0.52. Using the same assumption that the quantum yield of the D2O photodissociation at 157 nm is unity, the quantum yield of the D-atom production from the HOD photodissociation at 157 nm is determined to be 0.26. Therefore the total quantum yield for the H and D products from HOD is 0.64 + 0.26 = 0.90. This is a little bit smaller ( 10%) than 1 since the total quantum yield of the H and D productions from the HOD photodissociation should be unity because no other dissociation channel is present for the HOD photodissociation other than the H and D atom elimination processes. There are a couple of sources of error, however, in this estimation (a) the assumption that the absorption cross-sections of all three water isotopomers at 157 nm are exactly the same, and (b) the accuracy of the volume mixture in the... [Pg.103]

If et is not known, it is possible to obtain more accurate values of d>lsc than above by using a lower flash intensity such that all the molecules are not excited during the flash (70 20-100 J). For this method the intensity of the light absorbed Ia must be accurately determined from the absorption spectrum and the incident light intensity 70 determined by actinometry. The concentration of triplet molecules [A ] can be determined from A[A ] as above. Since Ia and [A ] are smaller than in the previous case, errors due to the underlying T0 -> Tx absorption are reduced. The quantum yield of triplet formation is now... [Pg.421]

Direct Photolysis. Direct photochemical reactions are due to absorption of electromagnetic energy by a pollutant. In this "primary" photochemical process, absorption of a photon promotes a molecule from its ground state to an electronically excited state. The excited molecule then either reacts to yield a photoproduct or decays (via fluorescence, phosphorescence, etc.) to its ground state. The efficiency of each of these energy conversion processes is called its "quantum yield" the law of conservation of energy requires that the primary quantum efficiencies sum to 1.0. Photochemical reactivity is thus composed of two factors the absorption spectrum, and the quantum efficiency for photochemical transformations. [Pg.29]

Another possible source of modification of the HBI optical properties arises from cis-trans (or, more properly, Z-E) isomerization around its exocyclic ethylene bridge (dihedral angle x as depicted in Fig. 3a) [74, 75]. The absorption spectrum of trans HBI in different solvents is red-shifted by 5-10 nm compared to that of the cis conformation [76]. While the trans conformation is thermodynamically unfavorable and contributes only a minor population at room temperature, cis-trans isomerization seems to take place regardless of the chromophore ionization state, and involves a relatively low energy barrier of about 50 kJ/mol [75], a value that appears significantly lower than initially predicted from quantum mechanics [77, 78]. [Pg.356]

Voityuk AA, MichelBeyerle ME, Rosch N (1997) Protonation effects on the chromophore of green fluorescent protein. Quantum chemical study of the absorption spectrum. Chem Phys... [Pg.376]

The incident monochromatic photon-to-current conversion efficiency (IPCE), also called external quantum efficiency, is defined as the number of electrons generated by light in the external circuit divided by the number of incident photons as a function of excitation wavelength. It is expressed in Equation (7).29 In most cases, the photoaction spectrum overlaps with the absorption spectrum of the sensitizer adsorbed on the semiconductor surface. A high IPCE is a prerequisite for high-power photovoltaic applications, which depends on the sensitizer photon absorption, excited state electron injection, and electron transport to the terminals ... [Pg.723]

FRET is a nonradiative process that is, the transfer takes place without the emission or absorption of a photon. And yet, the transition dipoles, which are central to the mechanism by which the ground and excited states are coupled, are conspicuously present in the expression for the rate of transfer. For instance, the fluorescence quantum yield and fluorescence spectrum of the donor and the absorption spectrum of the acceptor are part of the overlap integral in the Forster rate expression, Eq. (1.2). These spectroscopic transitions are usually associated with the emission and absorption of a photon. These dipole matrix elements in the quantum mechanical expression for the rate of FRET are the same matrix elements as found for the interaction of a propagating EM field with the chromophores. However, the origin of the EM perturbation driving the energy transfer and the spectroscopic transitions are quite different. The source of this interaction term... [Pg.32]

Figure 20. The (So —> S2) absorption spectrum of pyrazine for reduced three- and four-dimensional models (left and middle panels) and for a complete 24-vibrational model (right panel). For the three- and four-dimensional models, the exact quantum mechanical results (full line) are obtained using the Fourier method [43,45]. For the 24-dimensional model (nearly converged), quantum mechanical results are obtained using version 8 of the MCTDH program [210]. For all three models, the calculations are done in the diabatic representation. In the multiple spawning calculations (dashed lines) the spawning threshold 0,o) is set to 0.05, the initial size of the basis set for the three-, four-, and 24-dimensional models is 20, 40, and 60, and the total number of basis functions is limited to 900 (i.e., regardless of the magnitude of the effective nonadiabatic coupling, we do not spawn new basis functions once the total number of basis functions reaches 900). Figure 20. The (So —> S2) absorption spectrum of pyrazine for reduced three- and four-dimensional models (left and middle panels) and for a complete 24-vibrational model (right panel). For the three- and four-dimensional models, the exact quantum mechanical results (full line) are obtained using the Fourier method [43,45]. For the 24-dimensional model (nearly converged), quantum mechanical results are obtained using version 8 of the MCTDH program [210]. For all three models, the calculations are done in the diabatic representation. In the multiple spawning calculations (dashed lines) the spawning threshold 0,o) is set to 0.05, the initial size of the basis set for the three-, four-, and 24-dimensional models is 20, 40, and 60, and the total number of basis functions is limited to 900 (i.e., regardless of the magnitude of the effective nonadiabatic coupling, we do not spawn new basis functions once the total number of basis functions reaches 900).
Figure 21. The (So — S2) absorption spectrum of pyrazine for the reduced three-dimensional model using different spawning thresholds. Full line Exact quantum mechanical results. Dashed line Multiple spawning results for — 2.5, 5.0, 10, and 20. (All other computational details are as in Fig. 20.) As the spawning threshold is increased, the number of spawned basis functions decreases, the numerical effort decreases, and the accuracy of the result deteriorates (slowly). In this case, the final size of the basis set (at t — 0.5 ps) varies from 860 for 0 = 2.5 to 285 for 0 = 20. Figure 21. The (So — S2) absorption spectrum of pyrazine for the reduced three-dimensional model using different spawning thresholds. Full line Exact quantum mechanical results. Dashed line Multiple spawning results for — 2.5, 5.0, 10, and 20. (All other computational details are as in Fig. 20.) As the spawning threshold is increased, the number of spawned basis functions decreases, the numerical effort decreases, and the accuracy of the result deteriorates (slowly). In this case, the final size of the basis set (at t — 0.5 ps) varies from 860 for 0 = 2.5 to 285 for 0 = 20.
Muller and Stock [227] used the vibronic coupling model Hamiltonian, Section III.D, to compare surface hopping and Ehrenfest dynamics with exact calculations for a number of model cases. The results again show that the semiclassical methods are able to provide a qualitative, if not quantitative, description of the dynamics. A large-scale comparison of mixed method and quantum dynamics has been made in a study of the pyrazine absorption spectrum, including all 24 degrees of freedom [228]. Here a method related to Ehrenfest dynamics was used with reasonable success, showing that these methods are indeed able to reproduce the main features of the dynamics of non-adiabatic molecular systems. [Pg.404]

However, the formation of these products does not appear to play a critical role in the decision as to whether the 425 nm and 480 nm maxima are due to different states of the same molecule or to different compounds. It was reported that special care was taken to ensure the purity of luminol and of 3-aminophthalate 109>. In commercially available 3-amino-phthalic acid a yellowish impurity exhibiting brilliant green fluorescence was detected 109> this substance also formed in neutral solutions of pure 3-amino phthalic acid and crystallized from these solutions in yellow crystals. The structure of this substance was determined to be 53 its absorption spectrum has a maximum at 388 nm the fluorescence maximum is at 475 nm, with a fluorescence quantum yield of about 0.75 in DMF i 9). [Pg.99]

Region C 1380-1600 A. The absorption spectrum is highly structured in this region138, so that significant participation of electronically excited N20 is a distinct possibility. Quantum yield data (Table 10), however, suggest that the... [Pg.72]

The values of ftot for various benzotriazole compounds in a range of solvents are listed in Table II. Values of the fluorescence quantum yield for TIN and TINS, corrected for the absorbance by their non-fluorescent, planar conformers at the excitation wavelength, are listed in Table III. In all the benzotriazole solutions examined, maximum fluorescence emission was observed at about 400 nm indicating that this emission originates from the non proton-transferred species. This was confirmed by examination of the fluorescence excitation spectrum which corresponds to the absorption spectrum of the non-planar form of the molecule. [Pg.71]


See other pages where Quantum absorption spectra is mentioned: [Pg.691]    [Pg.927]    [Pg.872]    [Pg.310]    [Pg.2061]    [Pg.299]    [Pg.361]    [Pg.370]    [Pg.168]    [Pg.675]    [Pg.195]    [Pg.257]    [Pg.262]    [Pg.300]    [Pg.64]    [Pg.109]    [Pg.482]    [Pg.354]    [Pg.358]    [Pg.58]    [Pg.962]    [Pg.102]    [Pg.102]    [Pg.499]    [Pg.12]    [Pg.159]    [Pg.264]    [Pg.302]    [Pg.568]    [Pg.427]    [Pg.431]   
See also in sourсe #XX -- [ Pg.363 ]




SEARCH



Absorption spectrum, quantum interference

© 2024 chempedia.info