Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantitative structure-activity correlation/relationship

PW91 (Perdew, Wang 1991) a gradient corrected DFT method QCI (quadratic conhguration interaction) a correlated ah initio method QMC (quantum Monte Carlo) an explicitly correlated ah initio method QM/MM a technique in which orbital-based calculations and molecular mechanics calculations are combined into one calculation QSAR (quantitative structure-activity relationship) a technique for computing chemical properties, particularly as applied to biological activity QSPR (quantitative structure-property relationship) a technique for computing chemical properties... [Pg.367]

Quantitative Structure—Activity Relationships. Many quantitative stmcture—activity relationship (QSAR) studies of progestins have appeared in the Hterature and an extensive review of this work is available (174). QSAR studies attempt to correlate electronic, steric, and/or hydrophobic properties to progestational activity or receptor binding affinity. A review focusing on the problems associated with QSAR of steroids has been pubUshed (175). [Pg.220]

In 1868 two Scottish scientists, Crum Brown and Fraser [4] recognized that a relation exists between the physiological action of a substance and its chemical composition and constitution. That recognition was in effect the birth of the science that has come to be known as quantitative structure-activity relationship (QSAR) studies a QSAR is a mathematical equation that relates a biological or other property to structural and/or physicochemical properties of a series of (usually) related compounds. Shortly afterwards, Richardson [5] showed that the narcotic effect of primary aliphatic alcohols varied with their molecular weight, and in 1893 Richet [6] observed that the toxicities of a variety of simple polar chemicals such as alcohols, ethers, and ketones were inversely correlated with their aqueous solubilities. Probably the best known of the very early work in the field was that of Overton [7] and Meyer [8], who found that the narcotic effect of simple chemicals increased with their oil-water partition coefficient and postulated that this reflected the partitioning of a chemical between the aqueous exobiophase and a lipophilic receptor. This, as it turned out, was most prescient, for about 70% of published QSARs contain a term relating to partition coefficient [9]. [Pg.470]

C-H and N-H bond dissociation energies (BDEs) of various five- and six-membered ring aromatic compounds (including 1,2,5-oxadiazole) were calculated using composite ab initio CBS-Q, G3, and G3B3 methods. It was found that all these composite ab initio methods provided very similar BDEs, despite the fact that different geometries and different procedures in the extrapolation to complete incorporation of electron correlation and complete basis set limit were used. A good quantitive structure-activity relationship (QSAR) model for the C-H BDEs of aromatic compounds... [Pg.318]

Govers, H., Ruepert, C., Aiking, H. (1984) Quantitative structure-activity relationships for polycyclic aromatic hydrocarbons Correlation between molecular connectivity, physico-chemical properties, bioconcentration and toxicity in Daphnia pulex. Chemosphere 13, 227-236. [Pg.905]

The overall importance of the medium on the reaction rates has been shown previously, but the nature and extent of solute-solvent interactions can alter tremendously various properties of the nucleophile the variations are usually satisfactorily correlated by some of the several quantitative structure-activity relationships (QSAR) that have been discussed37,38,51,96. The term quantitative structure-property relationship (QSPR) has been recently proposed for cases where a specific property, such as the basicity, is examined97. [Pg.1238]

Quantitative structure-activity relationships, HANSCH S CORRELATION ANALYSIS QUANTASOME QUANTUM... [Pg.776]

C. Correlation between Rendon Factor and Partition Coefficients Used in Quantitative Structure- Activity Relationships... [Pg.309]

Correlating analog structure with bioactivity via quantitative structure-activity relationship (QSAR) studies... [Pg.135]

Statistical and computational methods have been used to quantify structure-activi relationships leading to quantitative structure-activity relationships (QSAR). The concqpt of QSAR can be dated back to the work of Crum, Brown and Fraser from 1868 to 1869, and Richardson, also in 1869. Many notable papers were published in the period leading up to the twentieth century by men such as Berthelot and Jungfleisch in 1872, Nemst in 1891, Ov ton in 1897 and Meyer in 1899 (7). Professor Corwin Hansch is now regarded by many as the father of QSAR, because of his work in the development of new and innovative techniques for QSAR. He and his co-woikers produced a paper that was to be known as the birtii of QSAR, and was oititled "Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients" (2). [Pg.100]

Odor and taste quality can be mapped by multidimensional scaling (MDS) techniques. Physicochemical parameters can be related to these maps by a variety of mathematical methods including multiple regression, canonical correlation, and partial least squares. These approaches to studying QSAR (quantitative structure-activity relationships) in the chemical senses, along with procedures developed by the pharmaceutical industry, may ultimately be useful in designing flavor compounds by computer. [Pg.33]

Drug binding is enhanced by hydrophobicity in that portion of the drug that binds to the pocket toe. Quantitative structure-activity relationship (QSAR) analysis of these compounds have consistently shown that the most predictive parameter of antiviral activity is a measure of hydrophobicity, the octanol water partition coefficient (logP) [80,82,85]. These studies have also consistently shown that there is no apparent correlation between electrostatic potential or dipole moment and potency. [Pg.507]

The correlation of bioactivity data with Eq. 1 or some relationship derived from it results, if successful, in a correlation equation called a quantitative structure activity relationship (QSAR). [Pg.3]

Quantitative structure-activity relationship studies are of great importance in modern chemistry. From their origin in the study of organic chemistry dating back to the 19th century, these studies have relied on some empirical and qualitative rules about the reactivity similarities of compounds with similar structures. The most significant development in QSARs occurred with the work of Louis Hammett (1894-1987), who correlated some electronic properties of organic acids and bases with their equilibrium constants and reactivity (Johnson, 1973). Hammett postulated that the effect... [Pg.133]


See other pages where Quantitative structure-activity correlation/relationship is mentioned: [Pg.256]    [Pg.238]    [Pg.96]    [Pg.327]    [Pg.351]    [Pg.416]    [Pg.431]    [Pg.498]    [Pg.32]    [Pg.112]    [Pg.4]    [Pg.713]    [Pg.755]    [Pg.157]    [Pg.211]    [Pg.375]    [Pg.5]    [Pg.1222]    [Pg.60]    [Pg.5]    [Pg.75]    [Pg.59]    [Pg.896]    [Pg.92]    [Pg.479]    [Pg.252]    [Pg.131]    [Pg.156]    [Pg.140]    [Pg.104]    [Pg.375]    [Pg.341]    [Pg.168]    [Pg.327]    [Pg.133]   
See also in sourсe #XX -- [ Pg.169 , Pg.177 , Pg.181 ]




SEARCH



Activity correlations

Correlative relationship

QUANTITATIVE RELATIONSHIPS

Quantitative Structure-Activity Correlations

Quantitative Structure-Activity Relationships

Quantitative structur-activity relationships

Quantitative structure-activity

Quantitative structure-activity relationships correlation weights

Structural correlation

Structure-activity correlations

© 2024 chempedia.info