Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quadrupole splitting spectroscopy

The various, solid-state stereochemistries just described may often be distinguished fairly readily by " Sn Mossbauer spectroscopy 5-9, 452), particularly from the value of the quadrupole splitting parameter, AEq (see Table II). [Pg.40]

For example, octahedral quadrupole splitting observed for the cis-octahedral analogs 7,8). More recently, temperature-dependent Mossbauer measurements have been used in conjunction with Raman spectroscopy to determine molecular weights 453) and lattice rigidity 460) of various organotin compounds. [Pg.40]

A unique situation is encountered if Fe-M6ssbauer spectroscopy is applied for the study of spin-state transitions in iron complexes. The half-life of the excited state of the Fe nucleus involved in the Mossbauer experiment is tj/2 = 0.977 X 10 s which is related to the decay constant k by tj/2 = ln2/fe. The lifetime t = l//c is therefore = 1.410 x 10 s which value is just at the centre of the range estimated for the spin-state lifetime Tl = I/Zclh- Thus both the situations discussed above are expected to appear under suitable conditions in the Mossbauer spectra. The quantity of importance is here the nuclear Larmor precession frequency co . If the spin-state lifetime Tl = 1/feLH is long relative to the nuclear precession time l/co , i.e. Tl > l/o) , individual and sharp resonance lines for the two spin states are observed. On the other hand, if the spin-state lifetime is short and thus < l/o) , averaged spectra with intermediate values of quadrupole splitting A q and isomer shift 5 are found. For the intermediate case where Tl 1/cl , broadened and asymmetric resonance lines are obtained. These may be the subject of a lineshape analysis that will eventually produce values of rate constants for the dynamic spin-state inter-conversion process. The rate constants extracted from the spectra will be necessarily of the order of 10 -10 s"F... [Pg.108]

Potzel and Kalvius were the first to investigate zinc compounds with Zn Mossbauer spectroscopy. The first measurements were carried out with Znp2 powder at 4.2 K [80]. The observed quadrupole splitting could not be explained by a simple lattice sum calculation. More detailed measurements were carried out at... [Pg.264]

Chemical information from hafnium Mossbauer spectroscopy can primarily be deduced from the quadrupole-splitting parameter. In Table 7.4, we have listed the quadrupole coupling constants eQV for some hafnium compounds. Schafer et al. [Pg.288]

Two other publications on Ir (73 keV) Mossbauer spectroscopy of complex compounds of iridium have been reported by Williams et al. [291,292]. In their first article [291], they have shown that the additive model suggested by Bancroft [293] does not account satisfactorily for the partial isomer shift and partial quadrupole splitting in Ir(lll) complexes. Their second article [292] deals with four-coordinate formally lr(l) complexes. They observed, like other authors on similar low-valent iridium compounds [284], only small differences in the isomer shifts, which they attributed to the interaction between the metal-ligand bonds leading to compensation effects. Their interpretation is supported by changes in the NMR data of the phosphine ligands and in the frequency of the carbonyl stretching vibration. [Pg.328]

Mossbauer spectroscopy is particularly suitable to study ST since (1) the spectral parameters associated with the HS and LS states of iron(II) clearly differ and (2) the time-scale of the technique ( 10 s) allows the detection of the separate spin states in the course of the transition. Typically, Mossbauer spectra of HS iron(II) show relatively high quadrupole splitting (AEq 2-3 mm s ) and isomer shift (3 1 mm s ), while for LS iron(II), these parameters are generally smaller (AEq < 1 mm s 3 < 0.5 mm s ). Among the early applications of Mossbauer spectroscopy to study ST phenomena in iron(II) complexes is the work of Dezsi et al. [7] on [Fe (phen)2(NCS)2] (phen = 1,10-phenanthroline) as a function of temperature (Fig. 8.2). The transition from the HS ( 12) state (quadrupole doublet of outer two lines with AEq 3 mm s ) to the LS CAi) state (quadrupole... [Pg.394]

Apart from the determination of the structures of stannylenes by diffraction methods (X-ray or electron diffraction) many other physico-chemical techniques can be exployed to characterize these compounds more completely. Besides the classical methods such as IR-, Raman-, PE-, UV- and NMR-spectroscopy, MoBbauer-119 m-tin spectroscopy is widely used for the determination of the oxidation states of tin atoms and of their coordination 1n8-12°-123>. jt is not in the scope of this report to study the dependence of MoBbauer constants such as isomer shift and quadrupole splitting on structural parameters. Instead, we want to concentrate on one question Which information can we deduce from the structure of stannylenes to evaluate their reactivity ... [Pg.30]

Although in most of the above reports structural information is based on X-ray data, Au Mossbauer spectroscopy has also been successfully employed for the investigation of two-, three-, and four-coordination in gold(I) complexes.2551 An increase in coordination numbers leads to a decrease in the isomer shift (IS) by 1-2mm s 1 (three-coordination) or 2-4mm s 1 (four-coordination) relative to two-coordination. For the same ligands, the quadrupole splitting (QS) for three-coordinated complexes is expected to be very similar to that for the two-coordinate derivatives, while that for complexes with Td symmetry should be zero. [Pg.1047]

The nuclear transitions are very sensitive to the local environment of the atom, and Mossbauer spectroscopy is a sensitive probe of the different environments an atom occupies in a solid material. By analyzing the chemical shifts and quadrupole splitting in Mossbauer spectra of samples containing Mossbauer-ac-tive nuclei, information on the state of oxidation and the local structure can be obtained. Only a few nuclei can be used for this purpose, so this method has limited but powerful applications. [Pg.60]

Mossbauer Spectroscopy. Figure 1 shows room temperature Mossbauer emission spectra of two of the unsupported Co-Mo catalysts which we have studied in the present investigation. It is observed that the MES spectra of the two catalysts are quite different. For the catalyst with the low Co/Mo ratio (0.0625), a quadrupole doublet with an isomer shift of 6=0.33 mm/s and a quadrupole splitting of AE =1.12 mm/s are observed (spectrum a). These parameters are very similar to those observed previously for the Co-Mo-S phase in other catalysts (6-9). Furthermore, the spectrum of an unsupported catalyst with Co/Mo = 0.15 is found to be essentially identical to spectrum (a). The MES spectrum (b) of the catalyst with Co/Mo =... [Pg.79]

In the following section, we describe the case of adsorption of a Sn complex onto a palladium oxide suspension. In an alkaline medium (a basic PdO hydrosol), chlorides in the SnCL complex are substituted in the coordination sphere of tin(IV) by hydroxo anions, which are in excess, yielding the stannate Sn(OH)g complex. The Sn Mossbauer spectroscopy spectrum of a bimetallic sol (frozen in liquid nitrogen) is compared with a true stannic solution. At the same tin concentration, it shows the changes in the Sn environment due to adsorption onto the PdO surface (Fig. 13.27). The isomer shift S is found to be close to zero for the stannate solution and increases when contacted with the PdO suspension, indicating a modification of the coordination sphere of tin. The increase in 5 can be correlated to an increase in the core level electronic density of tin. The quadrupole splitting A, is related to a modification of the symmetry of the close environment of tin, due to adsorption of Sn(OH)g complexes onto the PdO colloidal nanoparticles. [Pg.274]

As indicated in the previous discussion, Mossbauer spectroscopy provides information that when coupled with results using other structural techniques assists in determining the structure of the complex under analysis. The relationships between the various techniques are summarized in Table II. The Mossbauer chemical shift provides information about the 4 electron contribution to the bond between the metal and the ligands in a complex. Similar estimates can be obtained from the results of measurements on the fine structure in the x-ray absorption edge and nuclear magnetic resonance data. The number of unpaired electrons can be evaluated from magnetic susceptibility data, electron spin resonance, and the temperature coeflScient of the Mossbauer quadrupole splitting (Pr). [Pg.59]

Mossbauer spectroscopy The Mossbauer effect is resonance absorption of 7 radiation of a precisely defined energy, by specific nuclei. It is the basis of a form of spectroscopy used for studying coordinated metal ions. The principal application in bioinorganic chemistry is Fe. The source for the 7 rays is Co, and the frequency is shifted by the Doppler effect, moving it at defined velocities (in mm/s) relative to the sample. The parameters derived from the Mossbauer spectrum (isomer shift, quadrupole splitting, and the hyperfine coupling) provide information about the oxidation, spin and coordination state of the iron. [Pg.252]

ESEEM is a pulsed EPR technique which is complementary to both conventional EPR and ENDOR spectroscopy(74.75). In the ESEEM experiment, one selects a field (effective g value) in the EPR spectrum and through a sequence of microwave pulses generates a spin echo whose intensity is monitored as a function of the delay time between the pulses. This resulting echo envelope decay pattern is amplitude modulated due to the magnetic interaction of nuclear spins that are coupled to the electron spin. Cosine Fourier transformation of this envelope yields an ENDOR-like spectrum from which nuclear hyperfine and quadrupole splittings can be determined. [Pg.385]


See other pages where Quadrupole splitting spectroscopy is mentioned: [Pg.327]    [Pg.356]    [Pg.371]    [Pg.433]    [Pg.229]    [Pg.78]    [Pg.79]    [Pg.89]    [Pg.120]    [Pg.177]    [Pg.327]    [Pg.350]    [Pg.419]    [Pg.419]    [Pg.422]    [Pg.430]    [Pg.433]    [Pg.46]    [Pg.201]    [Pg.347]    [Pg.26]    [Pg.31]    [Pg.117]    [Pg.300]    [Pg.141]    [Pg.20]    [Pg.162]    [Pg.52]    [Pg.73]    [Pg.118]    [Pg.311]    [Pg.302]    [Pg.347]   


SEARCH



Quadrupole splitting

Quadrupole splittings

© 2024 chempedia.info