Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyruvate, chiral

The enzyme is a single enantiomer of a chiral molecule and binds the coenzyme and substrate m such a way that hydride is transferred exclusively to the face of the carbonyl group that leads to (5) (+) lactic acid Reduction of pyruvic acid m the absence of an enzyme however say with sodium borohydride also gives lactic acid but as a racemic mixture containing equal quantities of the R and S enantiomers... [Pg.735]

Formation of PAC from benzaldehyde and pyruvate catalysed by PDC and reductive amination of if-PAC to produce the chiral biopharmaceutical product ephedrine. [Pg.24]

Theoretical studies aimed at rationalizing the interaction between the chiral modifier and the pyruvate have been undertaken using quantum chemistry techniques, at both ab initio and semi-empirical levels, and molecular mechanics. The studies were based on the experimental observation that the quinuclidine nitrogen is the main interaction center between cinchonidine and the reactant pyruvate. This center can either act as a nucleophile or after protonation (protic solvent) as an electrophile. In a first step, NH3 and NH4 have been used as models of this reaction center, and the optimal structures and complexation energies of the pyruvate with NH3 and NHa, respectively, were calculated [40]. The pyruvate—NHa complex was found to be much more stable (by 25 kcal/mol) due to favorable electrostatic interaction, indicating that in acidic solvents the protonated cinchonidine will interact with the pyruvate. [Pg.56]

The molecular modelling approach, taking into account the pyruvate—cinchona alkaloid interaction and the steric constraints imposed by the adsorption on the platinum surface, leads to a reasonable explanation for the enantio-differentiation of this system. Although the prediction of the complex formed between the methyl pyruvate and the cinchona modifiers have been made for an ideal case (solvent effects and a quantum description of the interaction with the platinum surface atoms were not considered), this approach proved to be very helpful in the search of new modifiers. The search strategy, which included a systematic reduction of the cinchona alkaloid structure to the essential functional parts and validation of the steric constraints imposed to the interaction complex between modifier and methyl pyruvate by means of molecular modelling, indicated that simple chiral aminoalcohols should be promising substitutes for cinchona alkaloid modifiers. Using the Sharpless symmetric dihydroxylation as a key step, a series of enantiomerically pure 2-hydroxy-2-aryl-ethylamines... [Pg.57]

An attractive alternative to these novel aminoalcohol type modifiers is the use of 1-(1-naphthyl)ethylamine (NEA, Fig. 5) and derivatives thereof as chiral modifiers [45-47]. Trace quantities of (R)- or (S)-l-(l-naphthyl)ethylamine induce up to 82% ee in the hydrogenation of ethyl pyruvate over Pt/alumina. Note that naphthylethylamine is only a precursor of the actual modifier, which is formed in situ by reductive alkylation of NEA with the reactant ethyl pyruvate. This transformation (Fig. 5), which proceeds via imine formation and subsequent reduction of the C=N bond, is highly diastereoselective (d.e. >95%). Reductive alkylation of NEA with different aldehydes or ketones provides easy access to a variety of related modifiers [47]. The enantioselection occurring with the modifiers derived from NEA could be rationalized with the same strategy of molecular modelling as demonstrated for the Pt-cinchona system. [Pg.58]

Not so long ago, the general opinion was that high enantioselectivity can only be achieved with natural, structurally unique, complex modifiers as the cinchona alkaloids. Our results obtained with simple chiral aminoalcohols and amines demonstrate the contrary. With enantiomeric excesses exceeding 80%, commercially available naphthylethylamine is the most effective chiral modifier for low-pressure hydrogenation of ethyl pyruvate reported to... [Pg.58]

The enantiomeric excess (ee) of the hydrogenated products was determined either by polarimetry, GLC equipped with a chiral column or H-NMR with a chiral shift reagent. Methyl lactate and methyl 3-hydroxybutanoate, obtained from 1 and 2, respectively, were analized polarimetry using a Perkin-Elmer 243B instrument. The reference values of [a]o(neat) were +8.4° for (R)-methyl pyruvate and -22.95° for methyl 3-hydroxybutcinoate. Before GLC analysis, i-butyl 5-hydroxyhexanoate, methyl 5-hydroxyhexanoate, and n-butyl 5-hydroxyhexanoate, obtained from 1, 5, and 6, respectively, were converted to the pentanoyl esters, methyl 3-hydroxybutanoate was converted to the acetyl ester, and methyl 4-methyl-3-hydroxybutanoate obtained from 2 was converted the ester of (+)-a-methyl-a-(trifluoromethyl)phenyl acetic acid (MTPA). [Pg.239]

Based on these preliminary findings, related couplings to pyruvates and iminoacetates were explored as a means of accessing a-hydroxy acids and a-amino acids, respectively. It was found that hydrogenation of 1,3-enynes in the presence of pyruvates using chirally modified cationic rhodium catalysts delivers optically enriched a-hydroxy esters [102]. However, chemical yields were found to improve upon aging of the solvent 1,2-dichloroethane (DCE), which led to the hypothesis that adventitious HC1 may promote re-... [Pg.99]

Chiral Bronsted acid co-catalysts do not promote formation of optically enriched products in analogous couplings to pyruvates, although increased rate and conversion in response to the Bronsted acid co-catalyst is unmistakably apparent. For pyruvates, protonation likely occurs subsequent to the C-C... [Pg.100]

Pt/Al2C>3-cinchona alkaloid catalyst system is widely used for enantioselective hydrogenation of different prochiral substrates, such as a-ketoesters [1-2], a,p-diketones, etc. [3-5], It has been shown that in the enantioselective hydrogenation of ethyl pyruvate (Etpy) under certain reaction conditions (low cinchonidine concentration, using toluene as a solvent) achiral tertiary amines (ATAs triethylamine, quinuclidine (Q) and DABCO) as additives increase not only the reaction rate, but the enantioselectivity [6], This observation has been explained by a virtual increase of chiral modifier concentration as a result of the shift in cinchonidine monomer - dimer equilibrium by ATAs [7],... [Pg.535]

New modifiers have traditionally been discovered by the trial-and-error method. Many naturally occurring chiral compounds (the chiral pool38) have been screened as possible modifiers. Thus, the hydrogenation product of the synthetic drug vinpocetine was discovered to be a moderately effective modifier of Pt and Pd for the enantioselective hydrogenation of ethyl pyruvate and isophorone.39 Likewise, ephedrine, emetine, strychnine, brucine, sparteine, various amino acids and hydroxy acids, have been identified as chiral modifiers of heterogeneous catalysts.38... [Pg.109]

Aldolases catalyze asymmetric aldol reactions via either Schiff base formation (type I aldolase) or activation by Zn2+ (type II aldolase) (Figure 1.16). The most common natural donors of aldoalses are dihydroxyacetone phosphate (DHAP), pyruvate/phosphoenolpyruvate (PEP), acetaldehyde and glycine (Figure 1.17) [71], When acetaldehyde is used as the donor, 2-deoxyribose-5-phosphate aldolases (DERAs) are able to catalyze a sequential aldol reaction to form 2,4-didexoyhexoses [72,73]. Aldolases have been used to synthesize a variety of carbohydrates and derivatives, such as azasugars, cyclitols and densely functionalized chiral linear or cyclic molecules [74,75]. [Pg.27]

The concept of using colloids stabilized with chiral ligands was first applied by Bonnemann to hydrogenate ethyl pyruvate to ethyl lactate with Pt colloids. The nanoparticles were stabilized by the addition of dihydrocinchonidine salt (DHCin, HX) and were used in the liquid phase or adsorbed onto activated charcoal and silica [129, 130]. The molar ratio of platinum to dihydrocinchonidine, which ranged from 0.5 to 3.5 during the synthesis, determines the particle size from 1.5 to 4 nm and contributes to a slight decrease in activity (TOF = l s ). In an acetic acid/MeOH mixture and under a hydrogen pressure up to 100 bar, the (R)-ethyl lactate was obtained with optical yields of 75-80% (Scheme 9.11). [Pg.249]

Salzer et al. prepared a set of planar-chiral diphosphine ligands based on the arene chromium tricarbonyl backbone (Fig. 36.3) [21]. The straightforward four-step synthetic route allowed the preparation of 20 ligands of this family. These ligands were tested in Ru- and Rh-catalyzed enantioselective hydrogenation of various substrates, including the standard C=C substrates (dimethyl itaconate, methyl-2-acetamidocinnamate, methyl-2-acetamidoacrylate) as well as MEA-imine (l-(methoxymethyl)ethylidene-methylethylaniline) and ethyl pyruvate. Moderate conversions and ee-values were obtained. [Pg.1254]

Erker and co-workers reported in 1990 that in the presence of the chiral Zr complex 82, shown in Eq. 6.16, 1-naphthol adds to ethyl pyruvate with an appreciable level of enantio-... [Pg.207]

The utilization of copper complexes (47) based on bisisoxazolines allows various silyl enol ethers to be added to aldehydes and ketones which possess an adjacent heteroatom e.g. pyruvate esters. An example is shown is Scheme 43[126]. C2-Symmetric Cu(II) complexes have also been used as chiral Lewis acids for the catalysis of enantioselective Michael additions of silylketene acetals to alkylidene malonates[127]. [Pg.32]

The addition of an enolsilane to an aldehyde, commonly referred to as the Mukaiyama aldol reaction, is readily promoted by Lewis acids and has been the subject of intense interest in the field of chiral Lewis acid catalysis. Copper-based Lewis acids have been applied to this process in an attempt to generate polyacetate and polypropionate synthons for natural product synthesis. Although the considerable Lewis acidity of many of these complexes is more than sufficient to activate a broad range of aldehydes, high selectivities have been observed predominantly with substrates capable of two-point coordination to the metal. Of these, benzy-loxyacetaldehyde and pyruvate esters have been most successful. [Pg.114]

The colloidal catalysts have been prepared in different particle sizes by the reduction of platinum tetrachloride with formic acid in the presence of different amounts of alkaloid. Optical yields of 75-80% ee were obtained in the hydrogenation of ethyl pyruvate with chirally modified Pt sols (Equation 3.7). The catalysts were demonstrated to be structure-insensitive since turnover frequencies (ca. 1 sec-1) and enantiomeric excess are independent of the particle size. [Pg.80]

As we have seen a stereoselective reaction is one in which there is a preponderance of one isomer irrespective of the stereochemistry of the reactant. The enzymatic reduction of pyruvic acid is stereoselective when the chiral molecules of the enzyme complexes with achiral pyruvic acid, they given a preponderance of one form of pyruvic acid-enzyme complex which then gives a single form of lactic acid. [Pg.148]


See other pages where Pyruvate, chiral is mentioned: [Pg.227]    [Pg.227]    [Pg.174]    [Pg.175]    [Pg.127]    [Pg.139]    [Pg.72]    [Pg.46]    [Pg.276]    [Pg.49]    [Pg.56]    [Pg.221]    [Pg.226]    [Pg.431]    [Pg.174]    [Pg.306]    [Pg.314]    [Pg.548]    [Pg.108]    [Pg.690]    [Pg.353]    [Pg.353]    [Pg.354]    [Pg.821]    [Pg.545]    [Pg.499]    [Pg.510]    [Pg.513]    [Pg.514]    [Pg.514]    [Pg.92]    [Pg.109]   
See also in sourсe #XX -- [ Pg.264 ]




SEARCH



Chiral amines pyruvate decarboxylase

Pyruvic acid esters, chiral

© 2024 chempedia.info