Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino-Pyrroles

Baird, E.E. and P.B. Dervan. Solid phase synthesis of polyamides containing imidazole and pyrrole amino acids./. [Pg.150]

Another report describing the activation of the pyrrole amino group has appeared. Compounds 229 are transformed into 230 and 231 in 45-55% and 15-30% yields, respectively (Equation 81) <20000PD129>. [Pg.376]

The bone collagen cross-link (+)-deoxypyrrololine has potential clinical utility in the diagnosis of osteoporosis and other metabolic bone diseases. Intrigued by its novel structure and its promise to allow the early discovery of various bone diseases, the research team of M. Adamczyk developed a convergent total synthesis for this 1,3,4-trisubstituted pyrrole amino acid. The key step of the synthesis was the union of the nitroalkane and aldehyde fragments to obtain a diastereomeric mixture of the expected -nitro alcohol in good yield. This new functionality served as a handle to install the pyrrole ring. [Pg.203]

The synthesis will therefore normally produce a 2,4-substituted pyrrole, with in addition an ester group or an acyl group at the 3-position, if a keto ster or a diketone respectively has been employed, and an ester group or an alkyl (aryl) group at the 5-position, according to the nature of the amino-ketone. [Pg.293]

Pyrrole derivatives are prepared by the coupling and annulation of o-iodoa-nilines with internal alkynes[291]. The 4-amino-5-iodopyrimidine 428 reacts with the TMS-substituted propargyl alcohol 429 to form the heterocondensed pyrrole 430, and the TMS is removed[292]. Similarly, the tryptophane 434 is obtained by the reaction of o-iodoaniline (431) with the internal alkyne 432 and deprotection of the coupled product 433(293]. As an alternative method, the 2,3-disubstituted indole 436 is obtained directly by the coupling of the o-alky-nyltrifluoroacetanilide 435 with aryl and alkenyl halides or triflates(294]. [Pg.186]

Many methine cationic dyes, styrylic (141), pyrrolic. or amino-substituted (142) derivatives of thiazolium, possess interesting anthelmintic properties (143). This last class has been used as accelerators of the catabolism and activators of cellular exchanges (144). [Pg.80]

Functionalized conducting monomers can be deposited on electrode surfaces aiming for covalent attachment or entrapment of sensor components. Electrically conductive polymers (qv), eg, polypyrrole, polyaniline [25233-30-17, and polythiophene/23 2JJ-J4-j5y, can be formed at the anode by electrochemical polymerization. For integration of bioselective compounds or redox polymers into conductive polymers, functionalization of conductive polymer films, whether before or after polymerization, is essential. In Figure 7, a schematic representation of an amperomethc biosensor where the enzyme is covalendy bound to a functionalized conductive polymer, eg, P-amino (polypyrrole) or poly[A/-(4-aminophenyl)-2,2 -dithienyl]pyrrole, is shown. Entrapment of ferrocene-modified GOD within polypyrrole is shown in Figure 7. [Pg.46]

A -Amino- and A-substituted amino-pyrroles readily undergo Diels-Alder additions and add to activated alkynes at room temperature. The resulting azanorbornadienes extrude A-aminonitrenes and this forms the basis of an unusual synthesis of benzene derivatives (81S753,81TL3347). It has been found that ethyl/3-phenylsulfonylpropiolate (135) is a superior dienophile to DMAD (Scheme 50). [Pg.66]

In many cases, substituents linked to a pyrrole, furan or thiophene ring show similar reactivity to those linked to a benzenoid nucleus. This generalization is not true for amino or hydroxyl groups. Hydroxy compounds exist largely, or entirely, in an alternative nonaromatic tautomeric form. Derivatives of this type show little resemblance in their reactions to anilines or phenols. Thienyl- and especially pyrryl- and furyl-methyl halides show enhanced reactivity compared with benzyl halides because the halogen is made more labile by electron release of the type shown below. Hydroxymethyl and aminomethyl groups on heteroaromatic nuclei are activated to nucleophilic attack by a similar effect. [Pg.69]

These observations can be extrapolated to the pyrrole series the 2-amino derivatives are very unstable whereas 3-aminopyrroles appear to be more stable. 3-Amino-l-tritylpyr-role (162) appears to exist in solution exclusively in the imino-A -pyrroline form (163) (83JCS(P1)93). 2-Aminoindole (164) is unusual in that it exists mainly as the 3//-tautomer (165). 4-Alkylaminoindoles (166) undergo an unexpected rearrangement to 4-amino-1-alkylindoles (167) when heated with p-toluenesulfonic acid hydrate (82CC1356). [Pg.74]

In order to exploit the reactions of the C-lithio derivatives of iV-unsubstituted pyrroles and indoles, protecting groups such as t-butoxycarbonyl, benzenesulfonyl and dimethyl-amino have been used 81JOC157). This is illustrated by the scheme for preparing C-acylated pyrroles (211) (8UOC3760). [Pg.82]

The exploration of the chemistry of azirines has led to the discovery of several pyrrole syntheses. From a mechanistic viewpoint the simplest is based upon their ability to behave as a-amino ketone equivalents in reactions analogous to the Knorr pyrrole synthesis cf. Section 3.03.3.2.2), as illustrated in Schemes 91a and 91b for reactions with carbanions. Parallel reactions with enamines or a-keto phosphorus ylides can be effected with electron-deficient 2//-azirines (Scheme 91c). Conversely, electron-rich azirines react with electron deficient alkynes (Scheme 91d). [Pg.139]

The base-promoted ring contraction of 3-bromo-2-pyrones to 2-furoic acids cf. Scheme llOd) is a well exemplified reaction 01CB1992,69JCS(C)1950,73JCS(P1)1130> which has also been applied to the obtention of benzofuran-2-carboxylic acids frorn 3-bromocoumarins 08CB830,70KGS(S2)166), Similar base treatment of 3-amino-2-pyrones provides pyrrole-2-carboxylic acids (Scheme IlOe) 75JHC129). [Pg.149]

Furo[2,3-amino-synthesis, 4, 986 Furo[3,4-d]pyrimidinedione synthesis, 4, 987 Furopyrimidines, 4, 986 Furo[2,3-d]pyrimidines synthesis, 4, 986 Furo[3,2-d]pyrimidines synthesis, 4, 987 Furo[3,2- 6]pyrone synthesis, 4, 994 Furo[3,2-c]pyrone synthesis, 4, 993 Furo[3,2-6]pyrrole, hexahydro-biological activity, 6, 1024 1 H-Furo[3,4-6]pyrrole-2,3-dione, 4,6a-diphenyl-6-(phenylimino)-6,6a-dihydro-synthesis, 6, 1004 Furopyrroles... [Pg.638]


See other pages where Amino-Pyrroles is mentioned: [Pg.814]    [Pg.149]    [Pg.46]    [Pg.814]    [Pg.1875]    [Pg.1875]    [Pg.149]    [Pg.814]    [Pg.811]    [Pg.188]    [Pg.153]    [Pg.116]    [Pg.814]    [Pg.251]    [Pg.3003]    [Pg.814]    [Pg.149]    [Pg.46]    [Pg.814]    [Pg.1875]    [Pg.1875]    [Pg.149]    [Pg.814]    [Pg.811]    [Pg.188]    [Pg.153]    [Pg.116]    [Pg.814]    [Pg.251]    [Pg.3003]    [Pg.106]    [Pg.386]    [Pg.22]    [Pg.25]    [Pg.38]    [Pg.125]    [Pg.126]    [Pg.131]    [Pg.148]    [Pg.638]    [Pg.729]    [Pg.784]    [Pg.813]    [Pg.814]    [Pg.814]    [Pg.814]   
See also in sourсe #XX -- [ Pg.20 , Pg.22 , Pg.287 ]

See also in sourсe #XX -- [ Pg.20 , Pg.22 , Pg.287 ]

See also in sourсe #XX -- [ Pg.255 ]

See also in sourсe #XX -- [ Pg.246 ]

See also in sourсe #XX -- [ Pg.19 , Pg.565 ]

See also in sourсe #XX -- [ Pg.19 ]




SEARCH



3//-Pyrroles, 4-amino-5-cyano-, synthesis

Pyrrole 2- amino

Pyrrole 2- amino

Pyrrole 2-amino-3-cyano- from

Pyrrole 3-amino- from

Pyrrole amino acid

Pyrrole compounds, from amino sugars

Pyrroles amino Heck reactions

Pyrroles, amino-, tautomerism

© 2024 chempedia.info