Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridoxal Phosphate Intermediates

The chromophoric pyridoxal phosphate coenzyme provides a useful spectrophotometric probe of catalytic events and of conformational changes that occur at the pyridoxal phosphate site of the P subunit and of the aiPi complex. Tryptophan synthase belongs to a class of pyridoxal phosphate enzymes that catalyze /3-replacement and / -elimination reactions.3 The reactions proceed through a series of pyridoxal phosphate-substrate intermediates (Fig. 7.6) that have characteristic spectral properties. Steady-state and rapid kinetic studies of the P subunit and of the aiPi complex in solution have demonstrated the formation and disappearance of these intermediates.73-90 Fig. 7.7 illustrates the use of rapid-scanning stopped-flow UV-visible spectroscopy to investigate the effects of single amino acid substitutions in the a subunit on the rate of reactions of L-serine at the active site of the P subunit.89 Formation of enzyme-substrate intermediates has also been observed with the 012P2 complex in the crystalline state.91  [Pg.133]


In addition, it was shown that serine could form a complex with pyridoxal phosphate in the presence of nickel nitrate. This complex, with an absorption maximum at 940 m, was taken as evidence for formation of a schiff-base. Again, imder conditions in which serine formed this complex, ethanolamine failed to form a schiff-base. Brady et al. (1958) have suggested that the inactivity of ethanolamine may be due to its failure to form a pyridoxal phosphate intermediate. [Pg.127]

In nature, aminotransferases participate in a number of metabolic pathways [4[. They catalyze the transfer of an amino group originating from an amino acid donor to a 2-ketoacid acceptor by a simple mechanism. First, an amino group from the donor is transferred to the cofactor pyridoxal phosphate with formation of a 2-keto add and an enzyme-bound pyridoxamine phosphate intermediate. Second, this intermediate transfers the amino group to the 2-keto add acceptor. The readion is reversible, shows ping-pong kinetics, and has been used industrially in the production ofamino acids [69]. It can be driven in one direction by the appropriate choice of conditions (e.g. substrate concentration). Some of the aminotransferases accept simple amines instead of amino acids as amine donors, and highly enantioselective cases have been reported [70]. [Pg.45]

Figure 30-12. Intermediates in tyrosine catabolism. Carbons are numbered to emphasize their ultimate fate. (a-KG, a-ketoglutarate Glu, glutamate PLP, pyridoxal phosphate.) Circled numerals represent the probable sites of the metabolic defects in type II tyrosinemia neonatal tyrosinemia alkaptonuria and 0 type I tyrosinemia, or tyrosinosis. Figure 30-12. Intermediates in tyrosine catabolism. Carbons are numbered to emphasize their ultimate fate. (a-KG, a-ketoglutarate Glu, glutamate PLP, pyridoxal phosphate.) Circled numerals represent the probable sites of the metabolic defects in type II tyrosinemia neonatal tyrosinemia alkaptonuria and 0 type I tyrosinemia, or tyrosinosis.
The role of Schiff bases formed between pyridoxal phosphate and amino acid residues as intermediate products in many enzymatic reactions is well known and documented. NMR is an excellent tool for studies of the enzymatic processes involving Schiff bases formation. [Pg.153]

Hydrogen sulfide is a well known general metabolite produced on sulfate reduction by certain bacteria. Moreover, organic forms of sulfur can give rise to HS , hence H2S in certain bacteria. Thus, cysteine desulfhydrase (EC 4.4.1.1, cystathionine y-lyase) converts L-cysteine to H2S, pyruvate, and NH3. This enzyme shows a requirement for pyridoxal phosphate and the unstable ami-noacrylic acid is an intermediate (Equation 1) in the reaction ... [Pg.673]

Identification of pyridoxal phosphate as coenzyme suggested the aldehyde group on pyridoxine might form an intermediate Schiff s base with the donor amino acid. Pyridoxamine phosphate thus formed would in turn donate its NH2 group to the accepting a-ketonic acid, a scheme proposed by Schlenk and Fisher. 15N-labeling experiments and, later, the detection of the Schiff s base by its absorption in UV, confirmed the overall mechanism. Free pyridoxamine phosphate however does not participate in the reaction as originally proposed. Pyridoxal phosphate is invariably the coenzyme form of pyridoxine. [Pg.112]

The Schiff base can undergo a variety of reactions in addition to transamination, shown in Fig. 6.4 for example, racemization of the amino acid via the a-deprotonated intermediate. Many of these reactions are catalyzed by metal ions and each has its equivalent nonmetallic enzyme reaction, each enzyme containing pyridoxal phosphate as a coenzyme. Many ideas of the mechanism of the action of these enzymes are based on the behavior of the model metal complexes. [Pg.305]

Both muscle and liver have aminotransferases, which, unlike deaminases, do not release the amino groups as free ammonium ion. This class of enzymes transfers the amino group from one carbon skeleton (an amino acid) to another (usually a-ketoglutarate, a citric acid cycle intermediate). Pyridoxal phosphate (PLP) derived from vitamin is required to mediate the transfer. [Pg.243]

Binding of pyridoxal phosphate to peptide PP-42 also appears to be selective for lysine 30. As was indicated by NMR spectroscopy and UV/vis experiments, only one of three potential lysine Schiff bases appeared to form. To determine the site or sites of attachment, the aldimine peptide intermediates were reduced, proteolytically cleaved, and the fragments analyzed by mass spectroscopy. This... [Pg.8]

Pyridoxal phosphate (4) is the most important coenzyme in amino acid metabolism. Its role in transamination reactions is discussed in detail on p. 178. Pyridoxal phosphate is also involved in other reactions involving amino acids, such as decarboxylations and dehydrations. The aldehyde form of pyridoxal phosphate shown here (left) is not generally found in free form. In the absence of substrates, the aldehyde group is covalently bound to the e-amino group of a lysine residue as aldimine ( Schiffs base ). Pyridoxamine phosphate (right) is an intermediate of transamination reactions. It reverts to the aldehyde form by reacting with 2-oxoacids (see p. 178). [Pg.108]

Lactobacillus delbrueckii. In 1953, Rodwell suggested that the histidine decarboxylase of Lactobacillus 30a was not dependent upon pyridoxal phosphate (11). Rodwell based his suggestion upon the fact that the organism lost its ability to decarboxylate ornithine but retained high histidine decarboxylase activity when grown in media deficient in pyridoxine. It was not until 1965 that E. E. Snell and coworkers (12) isolated the enzyme and showed that it was, indeed, free of pyridoxal phosphate. Further advances in characterization of the enzyme were made by Riley and Snell (13) and Recsei and Snell (14) who demonstrated the existence of a pyruvoyl residue and the participation of the pyruvoyl residue in histidine catalysis by forming a Schiff base intermediate in a manner similar to pyridoxal phosphate dependent enzymes. Recent studies by Hackert et al. (15) established the subunit structure of the enzyme which is similar to the subunit structure of a pyruvoyl decarboxylase of a Micrococcus species (16). [Pg.434]

Kim, Chin, and co-workers have described a highly interesting oxyanion hole mimic that transforms L-amino acids to D-amino acids [97]. The mechanism involves stabilization of the enolate intermediate by an internal hydrogen bond array generated by urea group (Scheme 4.14). In the presence of an external base, such as triethylamine, the receptors readily promote the epimerization of a-amino acids, favoring the D-amino acids due to unfavorable steric interactions in the receptor-L-amino acid complex. These receptors can also be viewed as chiral mimics of pyridoxal phosphate [98]. [Pg.64]

Pyridoxal phosphate Tight Pyridoxine (Bj) Intermediate carrier of amino groups during aminotransfer reactions... [Pg.33]

The first examples of mechanism must be divided into two principal classes the chemistry of enzymes that require coenzymes, and that of enzymes without cofactors. The first class includes the enzymes of amino-acid metabolism that use pyridoxal phosphate, the oxidation-reduction enzymes that require nicotinamide adenine dinucleotides for activity, and enzymes that require thiamin or biotin. The second class includes the serine esterases and peptidases, some enzymes of sugar metabolism, enzymes that function by way of enamines as intermediates, and ribonuclease. An understanding of the mechanisms for all of these was well underway, although not completed, before 1963. [Pg.3]

The second part of the reaction requires pyridoxal phosphate (Fig. 22-18). Indole formed in the first part is not released by the enzyme, but instead moves through a channel from the a-subunit active site to the jS-subunit active site, where it condenses with a Schiff base intermediate derived from serine and PLP. Intermediate channeling of this type may be a feature of the entire pathway from chorismate to tryptophan. Enzyme active sites catalyzing different steps (sometimes not sequential steps) of the pathway to tryptophan are found on single polypeptides in some species of fungi and bacte-... [Pg.850]

Formation of S-aminolevulinic acid (ALA) All the carbon and nitrogen atoms of the porphyrin molecule are provided by two simple building blocks glycine (a nonessential amino acid) and succinyl CoA (an intermediate in the citric acid cycle). Glycine and succinyl CoA condense to form ALA in a reaction catalyzed by ALA synthase (Figure 21.3) This reaction requires pyridoxal phosphate as a coenzyme, and is the rate-controlling step in hepatic porphyrin biosynthesis. [Pg.276]

Figure 14-5 Some reactions of Schiff bases of pyridoxal phosphate, (a) Formation of the quinonoid intermediate, (b) elimination of a (3 substituent, and (c) transamination. The quinonoid-carbanionic intermediate can react in four ways (1—4) if enzyme specificity and substrate structure allow. Figure 14-5 Some reactions of Schiff bases of pyridoxal phosphate, (a) Formation of the quinonoid intermediate, (b) elimination of a (3 substituent, and (c) transamination. The quinonoid-carbanionic intermediate can react in four ways (1—4) if enzyme specificity and substrate structure allow.
Nucleophilic catalysis is a specific example of covalent catalysis the substrate is transiently modified by formation of a covalent bond with the catalyst to give a reactive intermediate. There are also many examples of electrophilic catalysis by covalent modification. It will be seen later that in the reactions of pyridoxal phosphate, Schiff base formation, and thiamine pyrophosphate, electrons are stabilized by delocalization. [Pg.42]

An essential feature of such stabilization is that the atoms in the tt system are planar. The extended molecular orbital is constructed from atomic orbitals that are perpendicular to the plane. Thus, for the electrons involved in any bond making or breaking processes to be stabilized by delocalization, the bonds that are being made or broken must also be perpendicular to the plane. This criterion may be used by pyridoxal phosphate-utilizing enzymes in choosing which bond jp cleave, as may be seen when the intermediate 8.44 is redrawn so that it is perpendicular to the plane of the paper (structures 8.45 the pyridine ring is represented as a solid bar). In each case, the bond that is broken is the one at the top, so that the electrons may be fed into the tt system. [Pg.471]

NMR studies have been carried out on Schiff bases derived from pyridoxal phosphate and amino acids, since they have been proposed as intermediates in many important biological reactions such as transamination, decarboxylation, etc.90 The pK.d values of a series of Schiff bases derived from pyridoxal phosphate and a-amino adds, most of which are fluorinated (Figure 11), have been derived from H and19F titration curves.91 The imine N atom was found to be more basic and more sensitive to the electron-withdrawing effect of fluorine than the pyridine N atom. Pyridoxal and its phosphate derivative are shown in Figure 12a. The Schiff base formation by condensation of both with octopamine (Figure 12b) in water or methanol solution was studied by 13C NMR. The enolimine form is favoured in methanol, while the ketoamine form predominates in water.92... [Pg.726]

Structures of catalytic intermediates in pyridoxal-phosphate-dependent reactions. The initial aldimine intermediate resulting from Schiff s base formation between the coenzyme and the a-amino group of an amino acid (a). This aldimine is converted to the resonance-stabilized... [Pg.203]

Pyridoxal phosphate forms a Schiff base (imine) with the glycine. A carbon-bound hydrogen is labile, and the resulting carbanion stabilized by resonance back into the pyridoxal phosphate. The carbanion approaches the carbonyl carbon of the succinyl-CoA. Following the elimination of the CoASH, the intermediate shown in figure 22.13 is formed. The intermediate then loses a C02, forming a carbanion that is resonance stabilized back into the pyridoxal phosphate. [Pg.899]


See other pages where Pyridoxal Phosphate Intermediates is mentioned: [Pg.133]    [Pg.133]    [Pg.71]    [Pg.323]    [Pg.50]    [Pg.243]    [Pg.258]    [Pg.211]    [Pg.216]    [Pg.673]    [Pg.35]    [Pg.170]    [Pg.49]    [Pg.434]    [Pg.48]    [Pg.52]    [Pg.256]    [Pg.1224]    [Pg.328]    [Pg.187]    [Pg.209]    [Pg.660]    [Pg.660]    [Pg.662]    [Pg.121]    [Pg.931]    [Pg.181]    [Pg.323]   


SEARCH



Pyridoxal phosphat

Pyridoxal phosphate

© 2024 chempedia.info