Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridine, detection

A iridine traces in aqueous solution can be determined by reaction with 4-(p-nitroben25l)pyridine [1083-48-3] and potassium carbonate [584-08-7]. Quantitative determination is carried out by photometric measurement of the absorption of the blue dye formed (367,368). Alkylating reagents interfere in the determination. A iridine traces in the air can be detected discontinuously by absorption in Folin s reagent (l,2-naphthoquinone-4-sulfonate) [2066-93-5] (369,370) with subsequent chloroform extraction and hplc analysis of the red dye formed (371,372). The detection limit is ca 0.1 ppm. Nitrogen-specific thermal ionisation detectors can be used for continuous monitoring of the ambient air. [Pg.12]

Pyridine Acute Toxicology. Pyridine causes gastrointestinal upset and central nervous system (CNS) depression at high levels of exposure. The odor of pyridine can be detected at extremely low concentrations (12 ppb). The LD q (oral, rats) is 891 mg/kg, the LC q (inhalation, rats) is 4000/4 (ppm/h), and the TLV is 15 mg/nP (79,80). [Pg.334]

Since the avermectins exhibit unprecedented potency, they are used at unusually low doses of 6 —300 )-lg/kg, which makes the detection and isolation of residues and metaboUtes from animal tissue a new challenge. For this reason a sensitive analytical assay requires a derivative suitable for detection at concentrations down to 1/10 or 1/100 of one ppm. Ivermectin and avermectin B are therefore converted into an aromatic derivative which allows detection by fluorescence absorbance. To achieve this derivatization, avermectin B, ivermectin, or their derivatives are heated with acetic anhydride in pyridine at 100°C for 24 h (30). The reaction time can be reduced to 1 h by using /V-methylimidazole as a catalyst (31). The resultant... [Pg.282]

The electrodeposited film of flavin derivatives would be utilized as a functional material in combination with number dehydrogenases and pyridine coenzymes for the detection of great number of analytes. [Pg.363]

Lateral interactions between the adsorbed molecules can affect dramatically the strength of surface sites. Coadsorption of weak acids with basic test molecules reveal the effect of induced Bronsted acidity, when in the presence of SO, or NO, protonation of such bases as NH, pyridine or 2,6-dimethylpyridine occurs on silanol groups that never manifest any Bronsted acidity. This suggests explanation of promotive action of gaseous acids in the reactions catalyzed by Bronsted sites. Just the same, presence of adsorbed bases leads to the increase of surface basicity, which can be detected by adsorption of CHF. ... [Pg.431]

The overall reaction stoichiometry having been established by conventional methods, the first task of chemical kinetics is essentially the qualitative one of establishing the kinetic scheme in other words, the overall reaction is to be decomposed into its elementary reactions. This is not a trivial problem, nor is there a general solution to it. Much of Chapter 3 deals with this issue. At this point it is sufficient to note that evidence of the presence of an intermediate is often critical to an efficient solution. Modem analytical techniques have greatly assisted in the detection of reactive intermediates. A nice example is provided by a study of the pyridine-catalyzed hydrolysis of acetic anhydride. Other kinetic evidence supported the existence of an intermediate, presumably the acetylpyridinium ion, in this reaction, but it had not been detected directly. Fersht and Jencks observed (on a time scale of tenths of a second) the rise and then fall in absorbance of a solution of acetic anhydride upon treatment with pyridine. This requires that the overall reaction be composed of at least two steps, and the accepted kinetic scheme is as follows. [Pg.7]

Direct detection of an intermediate. A nice example, the pyridine-catalyzed hydrolysis of acetic anhydride, was discussed in Chapter 1. Spectroscopic techniques are of great value, because they do not perturb the kinetic system, and because they are selective and sensitive. If the intermediate can be detected, the time course of its appearance and disappearance may be followed. [Pg.117]

This ester is formed from the anhydride in pyridine and is quantitatively cleaved with H2NNH2-H2O, Pyr-AcOH. The sensitivity of detection of this ester is high with its absorbance maximum of 513 nm and extinction coefficient of 78,600 in 5% CI2CHCO2H/CH2CI2 where it forms the trityl cation. ... [Pg.169]

Whereas only one dehydrobenzene, benzyne, has been detected, two pyridynes are possible. Thus, the scheme we can write ab initio for the action of a nucleophile on the isomeric monosubstituted derivatives of pyridine involving 2,3- (26) and/or 3,4-pyridyne (31) is more complicated than that for the analogous reaction of the corresponding benzene derivative. The validity of this scheme can be checked using data available in the hterature on reactions of halogenopyridines with potassium amide and hthium piperidide involving pyridynes. [Pg.126]

Unexpectedly strong intermolecular hydrogen bonding has been reported by IR spectroscopic studies for tetrahydro-4,7-phenanthroline-l,10-dione-3,8-dicarboxylic acids, which exist in the oxo-hydroxy form 165 in both solid state and in solution [78JCS(CC)369].Tlie conclusion was based on comparison of B-, C-, and D-type bands for 165 and their dimethyl esters (detection of hydrogen bonding) and on analysis of IR spectra in the 6 /xm region (pyridine- and pyridone-like bands). [Pg.100]

Tliionyl halides and A-heteroaromatics are known to be in equilibrium with the corresponding A-(halosulhnyl)heteroarylium halides. N-(Chlorosulhnyl)pyridinium chloride (36), for example, readily reacts with a second molecule of pyridine to give the A-[l-chlorosulhnyl-l,4-dihydro-pyridine-4-yl]pyridinium chloride (37a). The intermediate 37a is probably involved in the preparation of A-(pyridine-4-yl)pyridinium chloride hydrochloride (37b). However, the authors could not detect either 37a or 37b in their experiments (91CB2013) (Scheme 10). [Pg.191]

Tile chloro derivative 33a (not isolated) interacts with pyridine-2,3-diamine in dichloromethane at room temperature to yield 73 (85%) (93BSB357). A further example deals with the reaction between the salt 39 and benzene-1,2-diamine, which gives an imine 74 (80%) under special experimental conditions (93BSB357). In order for the reaction to work, the salt 39 must be isolated prior to its employment (Section IV,C,8). No traces of the diimines were detected for both cases. However, the experimental conditions were not optimized for this purpose since no more than three equivalents of the diamines were used (Scheme 23). [Pg.208]

In 1956 it was found that when pyridine is refluxed with a modified Raney-nickel catalyst, 2,2 -bipyridine (1) is formed in satisfactory yield. The isomeric bipyridines could not be detected, and the product was readily purified. Similar heterocyclic biaryls have been formed in the same way from substituted pyridines and from some related compounds, the yield being dependent on the nature of the compound. The reaction has become the method of choice for the preparation of 2,2 -bipyridine, and it is now used on an industrial scale. Bipyridyls are of particular importance as chelating agents. [Pg.179]

In addition to the Raney nickel catalysts, Raney catalysts derived from iron, cobalt, and copper have been examined for their action on pyridine. At the boiling point of pyridine, degassed Raney iron gave only a very small yield of 2,2 -bipyridine but the activity of iron in this reaction is doubtful as the catalyst was subsequently found to contain 1.44% of nickel. Traces of 2,2 -bipyridine (detected spectroscopically) were formed from pyridine and a degassed, Raney cobalt catalyst but several Raney copper catalysts failed to produce detectable quantities of 2,2 -bipyridine following heating with pyridine. [Pg.182]

Four 2-substituted pyridines were found to give the expected 6,6 -disubstituted 2,2 -bipyridines in yields corresponding to only about 3% of the amount of 2,2 -bipyridine formed from pyridine itself under comparable conditions. It is also of interest that with three 2-methyl-pyridines the expected 6,6 -dimethyl-2,2 -bipyridines were accompanied by smaller amounts of 2,2 -bipyridines having no methyl groups in the 6,6 -positions. Moreover, a very small amount of 5,5 -dimethyl-2,2 -bipyridine (8) was isolated following reaction with 2,5-lutidine (6) but no 3,3 -dimethyl-2,2 -bipyridine could be detected. The absence of this compound suggests that 3,3, 6,6 -tetramethyl-2,2 -bipyri-dine (9) is not an intermediate, but that the 2-methyl group is lost before the formation of the 2,2 -bipyridine (6—>8). [Pg.185]

Pyridines which failed to produce detectable quantities of 2,2 -bipyridines include 2-aminopyridine, 3-aminopyridine, 3,5-dibromo-pyridine, and ethyl isonicotinate. 2,2 -Bipyridine failed to give any 2,2 6, 2 6",2" -quaterpyridine, and this is discussed in a later section. [Pg.186]

The crude 2,2 -bipyridine obtained from the reaction of pyridine and degassed Raney nickel was found to contain 1.5% of 2 6, 2"-terpyridine, but no 2,2 2, 2" 6 ",2 "-quaterpyridine could be detected. Moreover, experiments with 2,2 -bipyridine and Raney nickel have failed to yield quaterpyridine, and the amount of terpyridine formed in experiments with mixtures of pyridine and 2,2 -bipyridine was found to be no higher than in the reaction with pyridine itself. " ... [Pg.198]

If it is assumed that 2,2 -bipyridine is bonded to the catalyst by both nitrogen atoms, then the position of the chemisorbed molecule on the metal is rigidly fixed. Unless two molecules of this base can be adsorbed at the required distance from each other and in an arrangement which is close to linear, overlap of the uncoupled electrons at the a-position cannot occur. The failure to detect any quaterpyridine would then indicate that nickel atoms of the required orientation are rarely, if ever, available. Clearly the probability of carbon-carbon bond formation is greater between one chemisorbed molecule of 2,2 -bipyridine and one of pyridine, as the latter can correct its orientation relative to the fixed 2,2 -bipyridine by rotation around the nitrogen-nickel bond, at least within certain limits. [Pg.198]


See other pages where Pyridine, detection is mentioned: [Pg.294]    [Pg.5586]    [Pg.5586]    [Pg.95]    [Pg.294]    [Pg.5586]    [Pg.5586]    [Pg.95]    [Pg.199]    [Pg.177]    [Pg.577]    [Pg.142]    [Pg.244]    [Pg.35]    [Pg.333]    [Pg.76]    [Pg.262]    [Pg.30]    [Pg.43]    [Pg.45]    [Pg.479]    [Pg.670]    [Pg.245]    [Pg.331]    [Pg.153]    [Pg.131]    [Pg.134]    [Pg.136]    [Pg.139]    [Pg.186]    [Pg.186]    [Pg.278]    [Pg.286]    [Pg.125]    [Pg.143]    [Pg.192]   
See also in sourсe #XX -- [ Pg.378 ]




SEARCH



Pyridine, detection paper chromatography

© 2024 chempedia.info