Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrazine substitution reactions

Electrophilic substitution reactions of unsubstituted quinoxaline or phenazine are unusual however, in view of the increased resonance possibilities in the transition states leading to the products one would predict that electrophilic substitution should be more facile than with pyrazine itself (c/. the relationship between pyridine and quinoline). In the case of quinoxaline, electron localization calculations (57JCS2521) indicate the highest electron density at positions 5 and 8 and substitution would be expected to occur at these positions. Nitration is only effected under forcing conditions, e.g. with concentrated nitric acid and oleum at 90 °C for 24 hours a 1.5% yield of 5-nitroquinoxaline (19) is obtained. The major product is 5,6-dinitroquinoxaline (20), formed in 24% yield. [Pg.163]

In the case of phenazine, substitution in the hetero ring is clearly not possible without complete disruption of the aromatic character of the molecule. Like pyrazine and quinoxa-line, phenazine is very resistant towards the usual electrophilic reagents employed in aromatic substitution reactions and substituted phenazines are generally prepared by a modification of one of the synthetic routes employed in their construction from monocyclic precursors. However, a limited range of substitution reactions has been reported. Thus, phenazine has been chlorinated in acid solution with molecular chlorine to yield the 1-chloro, 1,4-dichloro, 1,4,6-trichloro and 1,4,6,9-tetrachloro derivatives, whose gross structures have been proven by independent synthesis (53G327). [Pg.164]

Pyrazine and quinoxaline fV-oxides generally undergo similar reactions to their monoazine counterparts. In the case of pyridine fV-oxide the ring is activated both towards electrophilic and nucleophilic substitution reactions however, pyrazine fV-oxides are generally less susceptible to electrophilic attack and little work has been reported in this area. Nucleophilic activation generally appears to be more useful and a variety of nucleophilic substitution reactions have been exploited in the pyrazine, quinoxaline and phenazine series. [Pg.171]

In view of the known behaviour of pyrazines during nucleophilic substitution reactions, it comes as no surprise that anomalous reactions appear during nucleophilic substitution... [Pg.171]

In those reactions where the fV-oxide group assists electrophilic or nucleophilic substitution reactions, and is not lost during the reaction, it is readily removed by a variety of reductive procedures and thus facilitates the synthesis of substituted derivatives of pyrazine, quinoxaline and phenazine. [Pg.172]

Reactivity dealt with in the following sections is limited only to that of the heteroaromatic ring of pyrazines, quinoxalines, and phenazines, but exceptionally the reactivity on the benzo moiety of quinoxaline and phenazine is described in the Section 8.03.5.3. In general, any type of substitution reaction on quinoxaline and phenazine should be more facile than with pyrazine because of the resonance stabilization effect of the additional benzenoid ring on the transition states leading to the products. [Pg.282]

A variety of N-, 0- and 5-heterocyclic halides have been found to undergo the palladium-catalyzed al-kene substitution reaction. Halogen derivatives of furan, thiophene, pyridine, pyrazine, uracil, indole, quinoline and isoquinoline, for example, undergo the reaction. Iodoferrocene also reacts normally. [Pg.851]

Azine oxides are versatile starting materials for heterocyclic synthesis and are frequently used for regioselective ring substitution reactions, most of which proceed with loss of the oxide substituent. Occasionally some unusual selectivities are observed. For example, treatment of 3-methoxypyrazine A-oxide with equimolar amounts of diethylcarbamoyl chloride and 4-methoxytoluene-a-thiol in refluxing acetonitrile gave 2-methoxy-6-(4-methoxybenzylthio)-pyrazine as the sole product in 60% yield. [Pg.11]

Pyrazines are more resistant to electrophilic substitution reactions at the ring carbon atoms than the corresponding pyridines. Electrophilic attack normally takes place on the ring nitrogen atoms thus pyrazines form mono- and disalts with proton acids and mono- and... [Pg.122]

A patent (726) has described the preparation of 2methyl-pyrazine by reaction with ammonia and air at 350° over a catalyst containing vanadium pentoxide and potassium sulfate a series of cyanomethylpyrazines has been prepared from the corresponding methylpyrazines by reaction with sodium amide in liquid ammonia followed by Af-methyl-A -phenylcyanamide in dioxane (644). 2-Hydroxyiminomethylpyrazine has been prepared from 2-methylpyrazine, sodium amide, and liquid ammonia with butyl nitrite (727, 728), and 2-hydroxy-iminomethyl-3,6-dimethyI-5-pentylpyrazine similarly from 2,3,5-trimethyl-6-pentylpyrazine (648). Nitrones (28) have been prepared from 23-and 2,5-dimethyl-and tetramethylpyrazine through the substituted methylpyridinium (perchlorates) (27) by reaction with p-nitroso-A, fV-dimethylaniline (729). Dehydrogenation of ethylpyrazine at 600° over a calcium cobaltous phosphate catalyst gives 2-vinyl-pyrazine (658). [Pg.85]

Normal nucleophilic substitution reactions of alkyl and aryl chloropyrazines have been examined as follows 2-chloro-3-methyl- and 3-chloro-2,5-dimethyl(and diethyl)pyrazine with ammonia and various amines (535, 679, 680) 2-chloro-3(and 6)-methylpyrazine with methylamine and dimethylamine (681, 844), piperidine and other amines (681, 921) 2-chloro-5(and 6)-methylpyrazine with aqueous ammonia (362) alkyl (and phenyl) chloropyrazines with ammonium hydroxide at 200° (887) 2-chloro-3-methylpyrazine with aniline and substituted anilines (929), and piperazine at 140° (759) 2-chloro-3-methyl(and ethyl)pyrazine with piperidine (aqueous potassium hydroxide at reflux) (930,931) [cf. the formation of the 2,6-isomer( ) (932)] 2-chloro-3,6-dimethylpyrazine with benzylamine at 184-250° (benzaldehyde and 2-amino-3,6-dimethylpyrazine were also produced) (921) 2-chloro-3,5,6-trimethylpyrazine with aqueous ammonia and copper powder at 140-150° (933) and with dimethylamine at 180° for 3 days (934,935) 2-chloro-6-trifluoromethylpyrazine with piperazine in acetonitrile at reflux (759) 2-chloro-3-phenylpyrazine with aqueous ammonia at 200° (535) 2-chloro-5-phenylpyrazine with liquid ammonia in an autoclave at 170° (377) 2-chloro-5-phenylpyrazine with piperazine in refluxing butanol (759) but the 6-isomer in acetonitrile (759) 5-chloro-2,3-diphenylpyrazine and piperidine at reflux (741) and 5-chloro-23-diphenylpyrazine with 2-hydroxyethylamine in a sealed tube at 125° for 40 hours (834). [Pg.124]


See other pages where Pyrazine substitution reactions is mentioned: [Pg.163]    [Pg.769]    [Pg.115]    [Pg.653]    [Pg.286]    [Pg.771]    [Pg.366]    [Pg.354]    [Pg.163]    [Pg.254]    [Pg.636]    [Pg.769]    [Pg.280]    [Pg.28]    [Pg.213]    [Pg.722]    [Pg.302]    [Pg.219]    [Pg.326]    [Pg.304]    [Pg.350]    [Pg.775]    [Pg.163]    [Pg.254]    [Pg.432]    [Pg.625]    [Pg.432]    [Pg.625]    [Pg.769]   
See also in sourсe #XX -- [ Pg.296 ]

See also in sourсe #XX -- [ Pg.296 ]

See also in sourсe #XX -- [ Pg.296 ]




SEARCH



2- pyrazines substituted

Pyrazine reactions

Pyrazines reactions

© 2024 chempedia.info