Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Purified xylene oxidation

Terephthalic acid (p-TA or TA), a raw material for polyethylene terephthalate (PET) production, is one of the most important chemicals in petrochemical industry. Crude terephthalic acid (CTA), commonly produced by homogeneous liquid phase p-xylene oxidation, contains impurities such as 4-carboxybenzaldehyde (4-CBA, 2000-5000 ppm) and several colored polyaromatics that should be removed to obtain purified terephthalic acid (PTA). PTA is manufactured by hydropurification of CTA over carbon supported palladium catalyst (Pd/C) in current industry [1]. [Pg.293]

The discovery of poly(ethylene terephthalate), PET, in the 1940s [1,2] and its commercialization initially by DuPont and by ICI in the 1950s created a large market demand for terephthalic acid and terephthalate esters of polymer purity. Because dimethyl terephthalate, DMT, is readily purified by distillation [3] (and also because the p-xylene oxidation/esteiification intermediate, methyl p-toluate, is more readily kept in solution than is p-toluic acid) the polyester fibers and films industry was initially based on terephthalate ester. With the development of improved oxidation and purification technologies, purified terephthalic acid, TPA, became available in commercial quantities by the mid 1960s. Over 75% of the worldwide PET manufacture (total world PET capacity is over six million tons/year) is currently based on TPA rather than DMT [4]. This preference for TPA results from the less complicated esterification catalysis and the absence of methanol handling when the acid is used directly. [Pg.544]

In another example, air is added as a source of oxygen to the expansion vessel at 150 °C to oxidize 4-carboxy benzaldehyde (a coproduct of p-xylene oxidation ) to terephthalic acid. Again, no quantitative information is given about rates of reaction, conversion, purity, etc. Still other examples relate that water at 327 °C and 200 atm (subcritical not supercritical) either with or without oxygen results in the extraction and production of purified terephthalic acid. [Pg.459]

Raw Materials. Eor the first decade of PET manufacture, only DMT could be made sufficiently pure to produce high molecular weight PET. DMT is made by the catalytic air oxidation of -xylene to cmde TA, esterification with methanol, and purification by crystallization and distillation. After about 1965, processes to purify cmde TA by hydrogenation and crystallization became commercial (52) (see Phthalic ACID AND OTHER... [Pg.327]

Initial production of the dimethyl terephthalate started with the oxidation of -xylene to terephthaUc acid using nitric acid both companies reportedly used similar technology (43—45). Versions of the nitric acid oxidation process, which has been abandoned commercially, involved the use of air in the initial oxidation step to reduce the consumption of nitric acid (44,46,47). The terephthaUc acid was then esterified with methanol to produce dimethyl terephthalate, which could be purified by distillation to the necessary degree (48). [Pg.487]

Another sulfur dioxide appHcation in oil refining is as a selective extraction solvent in the Edeleanu process (323), wherein aromatic components are extracted from a kerosene stream by sulfur dioxide, leaving a purified stream of saturated aHphatic hydrocarbons which are relatively insoluble in sulfur dioxide. Sulfur dioxide acts as a cocatalyst or catalyst modifier in certain processes for oxidation of o-xylene or naphthalene to phthaHc anhydride (324,325). [Pg.148]

Has been purified by co-distillation with ethylene glycol (boils at 197.5°), from which it can be recovered by additn of water, followed by crysm from 95% EtOH, benzene, toluene, a mixture of benzene/xylene (4 1), or EtjO. It has also been chromatographed on alumina with pet ether in a dark room (to avoid photo-oxidation of adsorbed anthracene to anthraquinone). Other purification methods include sublimation in a N2 atmosphere (in some cases after refluxing with sodium), and recrystd from toluene [Gorman et al. J Am Chem Soc 107 4404 1985]. [Pg.114]

Meanwhile attempts to find an air oxidation route directly from p-xylene to terephthalic acid (TA) continued to founder on the relatively high resistance to oxidation of the /Moluic acid which was first formed. This hurdle was overcome by the discovery of bromide-controlled air oxidation in 1955 by the Mid-Century Corporation [42, 43] and ICI, with the same patent application date. The Mid-Century process was bought and developed by Standard Oil of Indiana (Amoco), with some input from ICI. The process adopted used acetic acid as solvent, oxygen as oxidant, a temperature of about 200 °C, and a combination of cobalt, manganese and bromide ions as catalyst. Amoco also incorporated a purification of the TA by recrystallisation, with simultaneous catalytic hydrogenation of impurities, from water at about 250 °C [44], This process allowed development of a route to polyester from purified terephthalic acid (PTA) by direct esterification, which has since become more widely used than the process using DMT. [Pg.13]

Although the superior properties of PEN have been known for many years, the unavailability of the naphthalate monomer has delayed the development of commercial markets, until relatively recently (1995) when the Amoco Chemical Company offered high purity naphthalene-2,6-dimethyl dicarboxylate (NDC) in amounts of up to 60 million pounds per year. This diester is produced by a five-step synthetic route, starting from the readily available compounds, o-xylene and 1,4-butadiene [3], Prior to this, the NDC diester was obtained by extraction of 2,6-dimethylnaphthalene (DMN) from petroleum streams, where it was present in relatively low abundance. Oxidation of DMN to crude 2,6-naphthalene dixcarboxylic (NDA) is conducted by a similar process to that used for conversion of p-xylcnc to purified terephthalic acid (TA), crude NDA is esterified with methanol, and is then distilled to yield high purity NDC. Other companies (e.g. the Mitsubishi Gas Chemical Company) followed Amoco s introduction with lesser amounts of NDC. Teijin [4] has manufactured PEN for many years for its own captive uses in films. [Pg.324]

The color of the final product primarily depends on the qualification of the raw materials, TPA, DMT and EG. The content of heavy metals in TPA, residues of catalysts employed during oxidation of p-xylene, and polymer processing affect the final color of the polymer. The tendency of certain catalysts, such as titanium or tin derivatives, to make the polyester yellowish in color is well established. The conversion during esterification is prolonged due to larger TPA particles or their hardness. Color can be influenced by these factors, as well as by chemical impurities in the raw materials, such as water, aldehydes or the quality of insufficiently recovered EG. Similar effects on color can be observed as a result of impurities caused by additives, particularly from less purified Sb2C>3. The quality of the latter can be assessed simply by the color of its solution in EG. [Pg.483]

The original route from p-xylene was oxidation in the presence of nitric acid. But the use of nitric acid is always problematical. There are corrosion and potential explosion problems, problems of nitrogen contamination of the product, and problems due to the requirement to run the reactions at high temperatures. Just a lot of problems that all led to the development of the liquid air phase oxidation of p-xylene. Ironically the nitrogen contamination problem was the reason that the intermediate DMT route to polyester was developed, since that was easy to purify by distillation. Subsequently, DMT has secured a firm place in the processing scheme. [Pg.267]

The TPA process. The technology involves the oxidation of p-xylene, as shown already in Figure 18—2. The reaction takes place in the liquid phase in an acetic acid solvent at 400°F and 200 psi, with a cobalt acetate/ manganese acetate catalyst and sodium bromide promoter. Excess air is present to ensure the p-xylene is fully oxidized and to minimize by-products. The reaction time is about one hour. Yields are 90—95% based on the amount of p-xylene that ends up as TPA. Solid TPA has only limited solubility in acetic acid, so happily the TPA crystals drop out of solution as they form. They are continuously removed by filtration of a slipstream from the bottom of the reactor. The crude TPA is purified by aqueous methanol extraction that gives 99 % pure flakes. [Pg.268]

Prior to polymerization, p-xylene is first oxidized to terephthalic acid (TA) or dimethyl terephtalate (DMT). These diacid or dimethyl ester monomers are then polymerized via a condensation reaction with ethylene glycol to form the polyester. Prior to the development of a method to purify TA to make purified terephtahc acid (PTA, >99% pure) by the Mid-Century Corporation in the 1950s [10], DMT was the primary way to obtain the purified dicarboxylate. The Amoco Oil Company, now part of BP International, made several improvements to the PTA process since its inception [11]. Since the advent of the availability of PTA, it has become the monomer of choice over DMT. PTA avoids the complications of including methanol to enable purification and handling the methanol evolved during the polymerization to polyester. [Pg.232]

Chemical/Physical. Under atmospheric conditions, the gas-phase reaction of o-xylene with OH radicals and nitrogen oxides resulted in the formation of o-tolualdehyde, o-methylbenzyl nitrate, nitro-o-xylenes, 2,3-and 3,4-dimethylphenol (Atkinson, 1990). Kanno et al. (1982) studied the aqueous reaction of o-xylene and other aromatic hydrocarbons (benzene, toluene, w and p-xylene, and naphthalene) with hypochlorous acid in the presence of ammonium ion. They reported that the aromatic ring was not chlorinated as expected but was cleaved by chloramine forming cyanogen chloride. The amount of cyanogen chloride formed increased at lower pHs (Kanno et al., 1982). In the gas phase, o-xylene reacted with nitrate radicals in purified air forming the following products 5-nitro-2-methyltoluene and 6-nitro-2-methyltoluene, o-methylbenzaldehyde, and an aryl nitrate (Chiodini et ah, 1993). [Pg.1153]

Compressed air and o-xylene or naphthalene vapor are mixed in an approximately 20 1 ratio and oxidized at 400°C. The product phthalic anhydride is recovered by condensation and purified by vacuum distillation. Maleic anhydride, a byproduct in both oxidations may be recovered from the waste gases in the form of maleic acid after water scrubbing. [Pg.518]

The Dynamit Nobel process produces dimethyl terephthalate (DMT) by a complicated series of oxidation and esterification stages (equation 241).83,84,86 In the oxidation section, p-xylene is oxidized at 150°C and 6 atm without solvent and in the presence of cobalt octoate to TPA and p-toluic acid. These oxidation products are sent to another reactor for esterification by methanol at 250 °C and 30 atm. Fiber grade DMT is purified by several recrystallizations, and monoesters are recycled to the oxidation reactor. The overall yield in DMT is about 80%, which is lower than in the Amoco process. However, this process is competitive because it is not corrosive and requires lower investments. It provides high-quality fiber-grade dimethyl terephthalate. [Pg.386]

Dimethyl terephthalate is manufactured from terephthalic acid or directly from p-xylene. Esterification of terephthalic acid with methanol occurs with sulfuric acid as the acid catalyst. Direct oxidation of p-xylcnc with methanol present also produced dimethyl terephthalate copper salts and manganese salt are catalysts for this reaction. The dimethyl terephthalate (boiling point 288°C, melting point 141°C) must be carefully purified via a five-column distillation system. [Pg.514]

On the other hand, although o-phthalic acid, or rather its anhydride, had long been produced in enormous amounts for use in the manufacture of alkyd resins, the para derivative was less well known and not available on a large scale. The synthesis is a straightforward one, however, from p-xylene, which is oxidized to terephthalic acid, either by means of nitric acid in the older process or by air (catalyzed) in the newer one. In the early years this compound then was converted to the easily purified dimethyl ester in order to obtain a colorless polymer adequate for the manufacture of commercially acceptable fibers. [Pg.460]

The toluic aldehyde/HBF complex is then decomposed by heating between 130 and 180 C in the presence of a solvent (benzene). The BF3. HF and unconverted toluene are recovered and recycled. The o- and p-tohiic aldehydes are separated by crystallization. Purified p-toluic aldehyde is air-oxidized (in solution m acetic add) in the presence of manganese acetate, cobalt acetate and sodium bromide, by the technique employed for p-xylene. This takes place around 200°C, at 2.10 Pa absolute ... [Pg.298]

In the Imhausen process, p-xylene is oxidized by air at elevated temperature to p-toluic acid. p-Toluic acid is soluble and easily esterified. It is converted to methyl p-toluate in the usual way. The metiiyl p-toluate is then oxidized by air to monomethyl terephthalate. This product is soluble in organic solvents and is esterified by methanol to give dimethyl terephthalate. The purified dimethyl terephthalate from either of these processes is suitable for use in the manufacture of polyethylene terephthalate. [Pg.734]

Polyethylene Terephthalate. Terephihalic acid is usually produced commercially by oxidation of p-xylene. TerephthaJic acid is a high-melting (above 300 C) insoluble product. It would be very difficult to react with an equivalent amount of a glycol to produce polymer. However, dimethyl terephthalate is fairly easily prepared by several commercial methods. Hiis ester (melting point, 141 C) is easily purified and is used to prepare the polymer. [Pg.961]


See other pages where Purified xylene oxidation is mentioned: [Pg.496]    [Pg.293]    [Pg.293]    [Pg.411]    [Pg.489]    [Pg.387]    [Pg.241]    [Pg.1158]    [Pg.94]    [Pg.359]    [Pg.94]    [Pg.359]    [Pg.154]    [Pg.241]    [Pg.457]    [Pg.95]    [Pg.16]    [Pg.379]    [Pg.387]    [Pg.43]    [Pg.352]    [Pg.1151]    [Pg.407]   


SEARCH



0-xylene oxidation

Purified

Purifying

© 2024 chempedia.info