Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pulsed lasers, femtosecond time scale

With the short pulses available from modem lasers, femtosecond time resolution has become possible [7, 71, 72 and 73], Producing accurate time delays between pump and probe pulses on this time scale represents a... [Pg.2127]

Luminescence lifetime spectroscopy. In addition to the nanosecond lifetime measurements that are now rather routine, lifetime measurements on a femtosecond time scale are being attained with the intensity correlation method (124), which is an indirect technique for investigating the dynamics of excited states in the time frame of the laser pulse itself. The sample is excited with two laser pulse trains of equal amplitude and frequencies nl and n2 and the time-integrated luminescence at the difference frequency (nl - n2 ) is measured as a function of the relative pulse delay. Hochstrasser (125) has measured inertial motions of rotating molecules in condensed phases on time scales shorter than the collision time, allowing insight into relaxation processes following molecular collisions. [Pg.16]

From a theoretical perspective, the object that is initially created in the excited state is a coherent superposition of all the wavefunctions encompassed by the broad frequency spread of the laser. Because the laser pulse is so short in comparison with the characteristic nuclear dynamical time scales of the motion, each excited wavefunction is prepared with a definite phase relation with respect to all the others in the superposition. It is this initial coherence and its rate of dissipation which determine all spectroscopic and collisional properties of the molecule as it evolves over a femtosecond time scale. For IBr, the nascent superposition state, or wavepacket, spreads and executes either periodic vibrational motion as it oscillates between the inner and outer turning points of the bound potential, or dissociates to form separated atoms, as indicated by the trajectories shown in Figure 1.3. [Pg.9]

Diels JC, Rudolph W (1996) Ultrashort laser pulse phenomena fundamentals, techniques, and applications on a femtosecond time scale. Academic, San Diego CA, pp 365-399... [Pg.146]

We know that the key events of chemical reactions take place on a femtosecond time scale. Recent fundamental breakthroughs in experimental methods have made it possible to resolve—in real time—the transformation from reactants to products via transition states [9-11]. This spectacular achievement was made possible by the development of femtosecond lasers, that is, laser pulses with a duration as short as a few femtoseconds. [Pg.199]

Abstract A challenging task in surface science is to unravel the dynamics of molecules on surfaces associated with, for example, surface molecular motion and (bimolecular) reactions. As these processes typically take place on femtosecond time scales, ultrafast lasers must be used in these studies. We demonstrate two complementary approaches to study these ultrafast molecular dynamics at metal surfaces. In the first, the molecules are studied after desorbing from the surface initiated by a laser pulse using the so called time-of-flight technique. In the second approach, molecules are studied in real time during their diffusion over the surface by using surface-specific pump-probe spectroscopy. [Pg.203]

Photo-induced reaction on a metal surface usually consists of several elementary reactions and it is difficult to model the whole reaction process. However, any reactions need to be triggered by electronic excitation. As stated in Section 20.1.4, the major mechanism is indirect excitation thus we focus on modeling the indirect excitation reaction. Since desorption from the surface is one of the simplest processes and can be a prototype for other complex surface reactions, DIET or DIME are clearly the best to study [10, 48, 53, 57, 96]. In photochemistry, continuous wave or nanosecond lasers lead to DIET, where desorption increase linearly with fluence. In contrast, the DIMET process is caused by intense and short laser pulses on the picosecond or femtosecond time scale, with nonlinear dependence on fluence. Since the fluence is proportional to the number of created hot electrons in the bulk, linear... [Pg.99]

Norrish and Porter developed the technique of flash photolysis in 1949 (Norrish and Porter, 1949 Porter, 1950). This technique, in which a flash lamp was used as an excitation source, had limitations in intensity and duration of the flash. Short pulses and high intensities of flash lamps are mutually exclusive. However, with the advent of pulsed lasers, flash photolysis equipment operating even in the femtosecond time scale is available. Table 12.3 lists some commonly used pulsed lasers. [Pg.263]

Temporal coherence allows laser pulses to be tailored, providing the chemist with the opportunity to observe rapid changes down to the femtosecond time-scale. Using the technique of femtosecond excitation and probing, we now have the capability to study ultrafast reactions in real time. [Pg.3]

Both linear and nonlinear Raman spectroscopy can be combined with time-resolved detection techniques when pumping with short laser pulses [8.781. Since Raman spectroscopy allows the determination of molecular parameters from measurements of frequencies and populations of vibrational and rotational energy levels, time-resolved techniques give information on energy transfer between vibrational levels or on structural changes of short-lived intermediate species in chemical reactions. One example is the vibrational excitation of molecules in liquids and the collisional energy transfer from the excited vibrational modes into other levels or into translational energy of the collision partners. These processes proceed on picosecond to femtosecond time scales [8.77,8.79]. [Pg.527]

The population probabilities Pn t) defined in Eqs. (8)-(13) should not be confused with the population probabilities which have been considered in the extensive earlier literature on radiationless transitions in polyatomic molecules, see Refs. 28 and 29 for reviews. There the population of a single bright (i.e. optically accessible from the electronic ground state) zero-order Born-Oppenheimer (BO) level is considered. Here, in contrast, we define the electronic population as the sum of all vibrational level populations within a given (diabatic or adiabatic) electronic state. These different definitions are adapted to different regimes of time scales of the system dynamics. If nonadiabatic interactions are relatively weak, and radiationless transitions relatively slow, the concept of zero-order BO levels is useful the populations of these levels can be prepared and probed using suitable laser pulses (typically of nanosecond duration). If the nonadiabatic transitions occur on femtosecond time scales, the preparation of individual zero-order BO levels is no longer possible. The total population of an electronic state then becomes the appropriate concept for the interpretation of time-resolved experiments. ° ... [Pg.401]

Femtosecond lasers represent the state-of-the-art in laser teclmology. These lasers can have pulse widths of the order of 100 fm s. This is the same time scale as many processes that occur on surfaces, such as desorption or diffusion. Thus, femtosecond lasers can be used to directly measure surface dynamics tlirough teclmiques such as two-photon photoemission [85]. Femtochemistry occurs when the laser imparts energy over an extremely short time period so as to directly induce a surface chemical reaction [86]. [Pg.312]

The flash lamp teclmology first used to photolyse samples has since been superseded by successive generations of increasingly faster pulsed laser teclmologies, leading to a time resolution for optical perturbation metliods tliat now extends to femtoseconds. This time scale approaches tlie ultimate limit on time resolution (At) available to flash photolysis studies, tlie limit imposed by chemical bond energies (AA) tlirough tlie uncertainty principle, AAAt > 2/j. [Pg.2946]

The availability of lasers having pulse durations in the picosecond or femtosecond range offers many possibiUties for investigation of chemical kinetics. Spectroscopy can be performed on an extremely short time scale, and transient events can be monitored. For example, the growth and decay of intermediate products in a fast chemical reaction can be followed (see Kinetic measurements). [Pg.18]

The events that happen to an atom in a chemical reaction are on a time scale of approximately 1 femtosecond (1 fs = 10 ",5 s), the time that it takes for a bond to stretch or bend and, perhaps, break. If we could follow atoms on that time scale, we could make a movie of the changes in molecules as they take part in a chemical reaction. The new field of femto-cbemistry, the study of very fast chemical processes, is bringing us closer to realizing that dream. Lasers can emit very intense but short pulses of electromagnetic radiation, and so they can be used to study processes on very short time scales. [Pg.652]


See other pages where Pulsed lasers, femtosecond time scale is mentioned: [Pg.19]    [Pg.381]    [Pg.176]    [Pg.88]    [Pg.201]    [Pg.150]    [Pg.216]    [Pg.227]    [Pg.153]    [Pg.339]    [Pg.3]    [Pg.4]    [Pg.121]    [Pg.272]    [Pg.10]    [Pg.13]    [Pg.9]    [Pg.1793]    [Pg.2]    [Pg.258]    [Pg.4]    [Pg.258]    [Pg.264]    [Pg.875]    [Pg.1968]    [Pg.388]    [Pg.281]    [Pg.1]    [Pg.2]    [Pg.2]    [Pg.15]   
See also in sourсe #XX -- [ Pg.902 ]




SEARCH



Femtosecond laser

Femtosecond laser pulses

Femtosecond pulse

Femtosecond pulsed lasers

Femtosecond time scale

Laser pulse

Scaled time

Time scales

Time scales, lasers

Timing pulse

© 2024 chempedia.info