Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protonation stereochemistry

The independent generation and reactivity of allenic enolates has been investigated.15 Under kinetic conditions, these highly reactive species are protonated in the a,p-7t plane with preference (E) to the larger ( group. Under thermodynamic con- (g) ditions, addition/elimination equilibrates the two product stereoisomers. The kinetic protonation stereochemistry has been found a function of solvent, proton donor, and donor concentration. [Pg.279]

R = Li or K) the protonation stereochemistry varies with R via the relative proportions of O- and C-protonation. In the light of this it is relevant to note that the steric course of bromination of cyclic metal enolates in ether has been found to be identical to that of enols but very different from that of the methyl enol ethers. [Pg.166]

A proton can be (numerically) represented by a series of topological and physicochemical descriptors, which account for the influence of the neighborhood on its chemical shift. Fast empirical procedures for the calculation of physicochemical descriptors are now easily accessible [45. Geometric descriptors were added in the case of some rigid substructures, as well as for rr-systems, to account for stereochemistry and 3D effects. [Pg.523]

The mechanism includes two single electron transfers (steps 1 and 3) and two proton transfers (steps 2 and 4) Experimental evidence indicates that step 2 is rate determining and it is believed that the observed trans stereochemistry reflects the dis tribution of the two stereoisomeric alkenyl radical intermediates formed in this step... [Pg.377]

Proton chemical shift data from nuclear magnetic resonance has historically not been very informative because the methylene groups in the hydrocarbon chain are not easily differentiated. However, this can be turned to advantage if a polar group is present on the side chain causing the shift of adjacent hydrogens downfteld. High resolution C-nmr has been able to determine position and stereochemistry of double bonds in the fatty acid chain (62). Broad band nmr has also been shown useful for determination of soHd fat content. [Pg.132]

The poly(vinyl alcohol) made for commercial acetalization processes is atactic and a mixture of cis- and /n j -l,3-dioxane stereoisomers is formed during acetalization. The precise cis/trans ratio depends strongly on process kinetics (16,17) and small quantities of other system components (23). During formylation of poly(vinyl alcohol), for example, i j -acetalization is more rapid than /ra/ j -acetalization (24). In addition, the rate of hydrolysis of the trans-2iQ. -A is faster than for the <7 -acetal (25). Because hydrolysis competes with acetalization during acetal synthesis, a high cis/trans ratio is favored. The stereochemistry of PVF and PVB resins has been studied by proton and carbon nmr spectroscopy (26—29). [Pg.450]

There is an admirable summary of the stereochemistry of barbiturates and di- to hexahydropyrimidines Further information on reduced pyrimidines is collected <70HC 16-81)322) and some examples of the use of proton NMR spectra in elucidating the conformations of hydropyrimidines is given elsewhere (Section 2.13.1.3.1), based on the general principles of such work <65QR426). [Pg.66]

A comparison of the methods of proton-proton NOE detection has shown that two-dimensional NOE detection such as NOESY and ROESY are better suited to the investigation of the stereochemistry of biopolymers whereas for small- to medium-sized molecules (up to 30 C atoms) NOE difference spectroscopy is less time consuming, more selective and thus more conclusive. [Pg.54]

J. L. Marshall, Carbon-Carbon and Carbon-Proton NMR Couplings Applications to Organic Stereochemistry and Conformational Analysis, Verlag Chemie International, Deerfield Beaeh, FL, 1983. [Pg.250]

Anti stereochemistry can be explained by a mechanism in which the alkene interacts simultaneously with the proton-donating hydrogen halide and with a source of halide ion, either a second molecule of hydrogen halide or a free halide ion. The anti stereochemistry is consistent with the expectation that the attack of halide ion would be from the opposite... [Pg.354]

A significant modification in the stereochemistry is observed when the double bond is conjugated with a group that can stabilize a carbocation intermediate. Most of the specific cases involve an aryl substituent. Examples of alkenes that give primarily syn addition are Z- and -l-phenylpropene, Z- and - -<-butylstyrene, l-phenyl-4-/-butylcyclohex-ene, and indene. The mechanism proposed for these additions features an ion pair as the key intermediate. Because of the greater stability of the carbocations in these molecules, concerted attack by halide ion is not required for complete carbon-hydrogen bond formation. If the ion pair formed by alkene protonation collapses to product faster than reorientation takes place, the result will be syn addition, since the proton and halide ion are initially on the same side of the molecule. [Pg.355]

The stereochemistry observed in hydrogen-exchange reactions of carbanions is very dependent on the conditions under which the anion is formed and trapped by proton... [Pg.411]

The stereochemistry of hydrogen-deuterium exchange at the chiral carbon in 2-phenylbutane shows a similar trend. When potassium t-butoxide is used as the base, the exchange occurs with retention of configuration in r-butanol, but racemization occurs in DMSO. The retention of configuration is visualized as occurring through an ion pair in which a solvent molecule coordinated to the metal ion acts as the proton donor... [Pg.412]

Protonation of the a-carbanion (50), which is formed both in the reduction of enones and ketol acetates, probably first affords the neutral enol and is followed by its ketonization. Zimmerman has discussed the stereochemistry of the ketonization of enols and has shown that in eertain cases steric factors may lead to kinetically controlled formation of the thermodynamically less stable ketone isomer. Steroidal unsaturated ketones and ketol acetates that could form epimeric products at the a-carbon atom appear to yield the thermodynamically stable isomers. In most of the cases reported, however, equilibration might have occurred during isolation of the products so that definitive conclusions are not possible. [Pg.35]

Most dienones that have been reduced have structures such that they cannot give epimeric products. However, reduction of 17 -hydroxy-7,17a-dimethyl-androsta-4,6-dien-3-one (63) affords 17 -hydroxy-7j9,17a-dimethylandrost-4-en-3-one (64), the thermodynamically most stable product, albeit in only 16% yield. The remainder of the reduction product was not identified. Presumably the same stereoelectronic factors that control protonation of the / -carbon of the allyl carbanion formed from an enone control the stereochemistry of the protonation of the (5-carbon of the dienyl carbanion formed from a linear dienone. The formation of the 7 -methyl compound from compound (63) would be expected on this basis. [Pg.36]

Addition of hydride ion from the catalyst gives the adsorbed dianion (15). The reaction is completed and product stereochemistry determined by protonation of these species from the solution prior to or concurrent with desorption. With the heteroannular enolate, (13a), both cis and trans adsorption can occur with nearly equal facility. When an angular methyl group is present trans adsorption (14b) predominates. Protonation of the latter species from the solution gives the cis product. Since the heteroannular enolate is formed by the reaction of A" -3-keto steroids with strong base " this mechanism satisfactorily accounts for the almost exclusive formation of the isomer on hydrogenation of these steroids in basic media. The optimum concentration of hydroxide ion in this reaction is about two to three times that of the substrate. [Pg.116]

The most general method for synthesis of cyclic enamines is the oxidation of tertiary amines with mercuric acetate, which has been investigated primarily by Leonard 111-116) and applied in numerous examples of structural investigation and in syntheses of alkaloids 102,117-121). The requirement of a tram-coplanar arrangement of an a proton and mercury complexed on nitrogen, in the optimum transition state, confers valuable selectivity to the reaction. It may thus be used as a kinetic probe for stereochemistry as well as for the formation of specific enamine isomers. [Pg.325]

The cleavage reaction occurs in three steps O protonation of the epoxide, Sn2 nucleophilic attack on the protonated epoxide, and deprotonation of the ring-opened product. Draw the complete mechanism. How many intermediates are there Which step determines diol stereochemistry ... [Pg.129]

The product of nucleophilic attack can be anticipated by examining the lowest-unoccupied molecular orbital (LUMO) on protonated cyclopentene oxide. From which direction (top or bottom) would a nucleophile be more likely to approach each epoxide carbon in order to transfer electrons into this orbital Explain. Does one carbon contribute more to the LUMO, or is the orbital evenly spread out over both epoxide carbons Assuming that LUMO shape dictates product stereochemistry, predict which stereoisomers will be obtained, and their approximate relative amounts. Is the anticipated kinetic product also the thermodynamic product (Compare energies of 1,2-cyclopentanediol stereoisomers to tell.)... [Pg.129]


See other pages where Protonation stereochemistry is mentioned: [Pg.166]    [Pg.166]    [Pg.407]    [Pg.4]    [Pg.22]    [Pg.75]    [Pg.323]    [Pg.202]    [Pg.278]    [Pg.6]    [Pg.50]    [Pg.134]    [Pg.248]    [Pg.290]    [Pg.329]    [Pg.798]    [Pg.844]    [Pg.888]    [Pg.121]    [Pg.185]    [Pg.329]    [Pg.376]    [Pg.411]    [Pg.412]    [Pg.34]    [Pg.126]    [Pg.451]    [Pg.463]    [Pg.98]    [Pg.292]    [Pg.248]   
See also in sourсe #XX -- [ Pg.309 ]




SEARCH



Anomeric proton stereochemistry

Enolate protonation, kinetic control stereochemistry

Proton exchange stereochemistry

Stereochemistry proton transfer

Sugar protons stereochemistry

© 2024 chempedia.info