Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protonation relative rates

Kinetic enolate- deprotonation of the most accessable proton (relative rates of deprotonation). Reaction done under essentially irreversible conditions. [Pg.72]

The relative basicities of aromatic hydrocarbons, as represented by the equilibrium constants for their protonation in mixtures of hydrogen fluoride and boron trifluoride, have been measured. The effects of substituents upon these basicities resemble their effects upon the rates of electrophilic substitutions a linear relationship exists between the logarithms of the relative basicities and the logarithms of the relative rate constants for various substitutions, such as chlorination and... [Pg.113]

Streitwieser pointed out that the eorrelation whieh exists between relative rates of reaetion in deuterodeprotonation, nitration, and ehlorination, and equilibrium eonstants for protonation in hydrofluorie aeid amongst polynuelear hydroearbons (ef. 6.2.3) constitutes a relationship of the Hammett type. The standard reaetion is here the protonation equilibrium (for whieh p is unity by definition). For eon-venience he seleeted the i-position of naphthalene, rather than a position in benzene as the referenee position (for whieh o is zero by definition), and by this means was able to evaluate /) -values for the substitutions mentioned, and cr -values for positions in a number of hydroearbons. The p -values (for protonation equilibria, i for deuterodeprotonation, 0-47 for nitration, 0-26 and for ehlorination, 0-64) are taken to indieate how elosely the transition states of these reaetions resemble a cr-eomplex. [Pg.138]

The cation—radical intermediate loses a proton to become, in this case, a benzyl radical. The relative rate of attack (via electron transfer) on an aromatic aldehyde with respect to a corresponding methylarene is a function of the ionization potentials (8.8 eV for toluene, 9.5 eV for benzaldehyde) it is much... [Pg.344]

Alkylation of isobutylene and isobutane in the presence of an acidic catalyst yields isooctane. This reaction proceeds through the same mechanism as dimerization except that during the last step, a proton is transferred from a surrounding alkane instead of one being abstracted by a base. The cation thus formed bonds with the base. Alkylation of aromatics with butylenes is another addition reaction and follows the same general rules with regard to relative rates and product stmcture. Thus 1- and 2-butenes yield j -butyl derivatives and isobutylene yields tert-huty derivatives. [Pg.364]

Structural effects on the rates of deprotonation of ketones have also been studied using veiy strong bases under conditions where complete conversion to the enolate occurs. In solvents such as THF or DME, bases such as lithium di-/-propylamide (LDA) and potassium hexamethyldisilylamide (KHMDS) give solutions of the enolates in relative proportions that reflect the relative rates of removal of the different protons in the carbonyl compound (kinetic control). The least hindered proton is removed most rapidly under these... [Pg.420]

Krapcho and Bothner-By made additional findings that are valuable ii understanding the Birch reduction. The relative rates of reduction o benzene by lithium, sodium and potassium (ethanol as proton donor) wer found to be approximately 180 1 0.5. In addition, they found that ben zene is reduced fourteen times more rapidly when methanol is the protoi donor than when /-butyl alcohol is used. Finally, the relative rates of reduc tion of various simple aromatic compounds by lithium were deteiTnined these data are given in Table 1-2. Taken together, the above data sho that the rate of a given Birch reduction is strikingly controlled by the meta... [Pg.14]

TABLE 12. Relative rates of H/D exchange of the diastereotopic protons in benzyl methyl sulfoxide and relative amount of 40 and 41 formed upon quenching of a-lithiobenzyl ethyl sulfone with D20 (after Reference 56)... [Pg.596]

Quantitative solid state 13C CP/MAS NMR has been used to determine the relative amounts of carbamazepine anhydrate and carbamazepine dihydrate in mixtures [59]. The 13C NMR spectra for the two forms did not appear different, although sufficient S/N for the spectrum of the anhydrous form required long accumulation times. This was determined to be due to the slow proton relaxation rate for this form. Utilizing the fact that different proton spin-lattice relaxation times exist for the two different pseudopolymorphic forms, a quantitative method was developed. The dihydrate form displayed a relatively short relaxation time, permitting interpulse delay times of only 10 seconds to obtain full-intensity spectra of the dihydrate form while displaying no signal due to the anhydrous... [Pg.120]

Streitwieser and Boerth studied the kinetic acidities of cycloalkenes with lithium cyclo-hexylamide (LiCHA) in cyclohexylamine for comparison with those of benzene and toluene66. The relative rates of deprotonation and the corresponding equilibrium pK values are tabulated in Table 12. These proton transfer transition states are stabilized by conjugation of the reacting C—H bond with the double bond. [Pg.748]

From the projection drawings below, it is obvious that the lone pair is anti to a C-C bond in F and a C-H bond in G. Table 50 lists the relative rates for deuterium exchange in some substituted cyclohexanes. In all cases, the equatorial proton exchanges at a much faster rate. [Pg.188]

The mechanism of alkyl hydrogen exchange was not clarified, but a possible mechanism was postulated. Partial hydride abstraction by a Lewis acid site may have occured forming a carbocation-like species followed by exchange of a proton at a R-carbon. Such a mechanism predicts exchange to occur preferentially at methyl groups adjacent to the most stable carbocations (benzylic > 3° > 2° > 1°). This is consistent with the observed relative rates of epimerization of steranes during thermal maturation of sediments (83). [Pg.479]

The occurrence of excited-state proton transfer during the lifetime of the excited state depends on the relative rates of de-excitation and proton transfer. The general equations will be presented first, but only for the most extensively studied case where the excited-state process is proton ejection (pK < pK) the proton donor is thus an acid, AH, and the proton acceptor is a water molecule. Methods for the determination of pK are then described and finally, the various cases of pH dependence of the absorption and fluorescence spectra are examined. [Pg.100]

Product 34 predominates in the polar aprotic solvent (acetonitrile), while in the polar protic solvent (methanol) products 35 are formed preferentially. The different products are caused by the relative rate of deprotonation against desilylation of the aminium radical, that is in turn governed by the action of enone anion radical in acetonitrile as opposed to that of nucleophilic attack by methanol. In an aprotic, less silophilic solvent (acetonitrile), where the enone anion radical should be a strong base, the proton transfer is favoured and leads to the formation of product 34. In aprotic solvents or when a lithium cation is present, the enone anion radical basicity is reduced by hydrogen bonding or coordination by lithium cation, and the major product is the desilylated 35 (Scheme 4). [Pg.689]

Both kinetic and thermodynamic data on organometallic hydrides should be very useful. The relative rates of proton transfer processes and other reactions determine a good deal of organometallic chemistry. For example, in our synthesis of cis-0s(C0) (CH )H> reactions 2-4, the comparative rates of... [Pg.400]


See other pages where Protonation relative rates is mentioned: [Pg.94]    [Pg.169]    [Pg.169]    [Pg.163]    [Pg.395]    [Pg.459]    [Pg.470]    [Pg.921]    [Pg.38]    [Pg.995]    [Pg.32]    [Pg.188]    [Pg.157]    [Pg.26]    [Pg.66]    [Pg.115]    [Pg.445]    [Pg.229]    [Pg.1310]    [Pg.104]    [Pg.6]    [Pg.191]    [Pg.10]    [Pg.501]    [Pg.178]    [Pg.85]    [Pg.36]    [Pg.186]    [Pg.97]    [Pg.24]    [Pg.159]    [Pg.148]    [Pg.162]   
See also in sourсe #XX -- [ Pg.151 ]




SEARCH



Proton rates

Rates protonation

Relative protonicity

Relative rates

© 2024 chempedia.info