Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protonation of Carbonyl Compounds

The addition of protons to the carbonyl group is an important process because of the role it plays in the acid catalyzed reactions of many types of carbonyl compounds. Because of the difference in electronegativity, it is likely that the proton is associated specifically with the oxygen rather than with the carbonyl group as a whole. [Pg.143]

In some cases spectroscopic evidence for such species exists. Thus the ultraviolet spectrum of acetophenone in aqueous sulfuric acid changes markedly as the concentration of acid is increased.278 In concentrated sulfuric acid simple aldehydes and ketones exists completely in the conjugate acid form. Unsaturated ketones give colored solutions in sulfuric acid and have -factors greater than two. The higher i-factors [Pg.143]

The asymmetric synthesis achieved when the base is an optically active one is proof that the base is present in a transition state with the carbonyl and not just an agent for removal of protons from hydrogen cyanide. It has further been shown that asymmetric synthesis is still achieved even if the only optically active molecules present are quaternary ammonium compounds, i.e., positive ions without any protons to donate. This probably means that the important thing is to have some positive ion near the carbonyl oxygen, an actual covalent [Pg.144]

Other reactions in which cations other than protons are catalyti-cally effective are esterification and acetal formation, catalyzed by calcium salts,277 and the bromination of ethyl cyclopentanone-2-carboxylate, catalyzed by magnesium, calcium, cupric, and nickel, but not by sodium or potassium ions.278 One interpretative difficulty, of course, is the separation of catalysis from the less specific salt effects. The boundary line between salt effects (medium effects) and salt effects (catalysis) is not sharp either in concept or experimentally. [Pg.145]


Acidic Carboxonium Ions (Hydroxylated Cations). Acidic carboxonium ions are generally obtained by protonation of carbonyl compounds.541,542 Aldehydes and ketones protonate on the carbonyl oxygen atom in superacid media at low temperatures, and the corresponding carboxonium ions can be directly observed543-551 [Eqs. (3.61) and (3.62)]. [Pg.172]

The reaction of aldehydes and ketones with an acid catalyst gives the corresponding oxygen-stabilized cation. Protonation of carbonyl compounds also gives carbocations (Scheme 2.11). Here, note that carbocations are positively charged species. They are much more likely to be formed in acidic than in basic media in fact, carbocations are never seen under conditions that are strongly basic. [Pg.30]

Additional gas-phase reactivity data, such as gas-phase acidities of alcohols [41], proton affinities of alcohols and ethers [41], and proton affinities of carbonyl compounds [42] could equally well be described by similar equations. [Pg.335]

The ff-oxidation of carbonyl compounds may be performed by addition of molecular oxygen to enolate anions and subsequent reduction of the hydroperoxy group, e.g. with triethyl phosphite (E.J. Bailey, 1962 J.N. Gardner, 1968 A,B). If the initially formed a-hydroperoxide possesses another enolizable a-proton, dehydration to the 1,2-dione occurs spontaneously, and further oxidation to complex product mitctures is usually observed. [Pg.121]

The study of the chemistry of carbonyl compounds has shown that they can act as carbon nucleophiles in the presence of acid catalysts as well as bases. The nucleophilic reactivity of carbonyl compounds in acidic solution is due to the presence of the enol tautomer. Enolization in acidic solution is catalyzed by O-protonation. Subsequent deprotonation at carbon gives the enol ... [Pg.425]

Three-dimensional potential energy diagrams of the type discussed in connection with the variable E2 transition state theory for elimination reactions can be used to consider structural effects on the reactivity of carbonyl compounds and the tetrahedral intermediates involved in carbonyl-group reactions. Many of these reactions involve the formation or breaking of two separate bonds. This is the case in the first stage of acetal hydrolysis, which involves both a proton transfer and breaking of a C—O bond. The overall reaction might take place in several ways. There are two mechanistic extremes ... [Pg.454]

Two classes of charged radicals derived from ketones have been well studied. Ketyls are radical anions formed by one-electron reduction of carbonyl compounds. The formation of the benzophenone radical anion by reduction with sodium metal is an example. This radical anion is deep blue in color and is veiy reactive toward both oxygen and protons. Many detailed studies on the structure and spectral properties of this and related radical anions have been carried out. A common chemical reaction of the ketyl radicals is coupling to form a diamagnetic dianion. This occurs reversibly for simple aromatic ketyls. The dimerization is promoted by protonation of one or both of the ketyls because the electrostatic repulsion is then removed. The coupling process leads to reductive dimerization of carbonyl compounds, a reaction that will be discussed in detail in Section 5.5.3 of Part B. [Pg.681]

A recent adaptation of the procedure employing perchlorate and fluoro-borate salts has been reported by Leonard and Paukstelis (J5). This report includes proof of structure by direct comparison to iminium salts prepared by protonation of enamines. The general reaction reported was that of a ketone or aldehyde with a secondary amine perchlorate to give iminium salts. A large structural variety of carbonyl compounds and several amine... [Pg.176]

As with the reduction of carbonyl compounds discussed in the previous section, we ll defer a detailed treatment of the mechanism of Grignard reactions until Chapter 19. For the moment, it s sufficient to note that Grignard reagents act as nucleophilic carbon anions, or carbanions ( R ), and that the addition of a Grignard reagent to a carbonyl compound is analogous to the addition of hydride ion. The intermediate is an alkoxide ion, which is protonated by addition of F O"1 in a second step. [Pg.615]

We would expect the C=0 linkage, by analogy with C=C (p. 178), to undergo addition reactions but whereas polar attack on the latter is normally initiated only by electrophiles, attack on the former— because of its bipolar nature—could be initiated either by electrophilic attack of X or X on oxygen or by nucleophilic attack of Y or Yt on carbon (radical-induced addition reactions of carbonyl compounds are rare). In practice, initial electrophilic attack on oxygen is of little significance except where the electrophile is an acid (or a Lewis acid), when rapid, reversible protonation may be a prelude to slow, rate-limiting attack by a nucleophile on carbon, to complete the addition, i.e. the addition is then acid-catalysed. [Pg.204]

The reaction can, however, be made preparative for (91) by a continuous distillation/siphoning process in a Soxhlet apparatus equilibrium is effected in hot propanone over solid Ba(OH)2 (as base catalyst), the equilibrium mixture [containing 2% (91)] is then siphoned off. This mixture is then distilled back on to the Ba(OH)2, but only propanone (b.p. 56°) will distil out, the 2% of 2-methyl-2-hydroxypentan-4-one ( diacetone alcohol , 91, b.p. 164°) being left behind. A second siphoning will add a further 2% equilibrium s worth of (91) to the first 2%, and more or less total conversion of (90) — (91) can thus ultimately be effected. These poor aldol reactions can, however, be accomplished very much more readily under acid catalysis. The acid promotes the formation of an ambient concentration of the enol form (93) of, for example, propanone (90), and this undergoes attack by the protonated form of a second molecule of carbonyl compound, a carbocation (94) ... [Pg.225]

The site of reaction on an unsaturated organometallic molecule is not restricted to the most probable position of the metallic atom or cation or to a position corresponding to any one resonance structure of the anion. This has been discussed in a previous section with reference to the special case of reaction with a proton. Although the multiple reactivity is particularly noticeable in the case of derivatives of carbonyl compounds, it is not entirely lacking even in the case of the derivatives of unsaturated hydrocarbons. Triphenylmethyl sodium reacts with triphenylsilyl chloride to give not only the substance related to hexaphenylethane but also a substance related to Chichi-babin s hydrocarbon.401 It will be recalled that both the triphenyl-carbonium ion and triphenylmethyl radical did the same sort of thing. [Pg.214]

Still another possibility in the base-catalyzed reactions of carbonyl compounds is alkylation or similar reaction at the oxygen atom. This is the predominant reaction of phenoxide ion, of course, but for enolates with less resonance stabilization it is exceptional and requires special conditions. Even phenolates react at carbon when the reagent is carbon dioxide, but this may be due merely to the instability of the alternative carbonic half ester. The association of enolate ions with a proton is evidently not very different from the association with metallic cations. Although the equilibrium mixture is about 92 % ketone, the sodium derivative of acetoacetic ester reacts with acetic acid in cold petroleum ether to give the enol. The Perkin ring closure reaction, which depends on C-alkylation, gives the alternative O-alkylation only when it is applied to the synthesis of a four membered ring ... [Pg.226]

C=X bonds The stereochemistry of the reduction of carbonyl compounds has been intensely studied with regard to synthetic and mechanistic aspects. The reduction of 1,2-diphenyl-l-propanone at a Hg cathode in aqueous EtOH and pH 8 affords the erythro alcohol as the major diastereomer (erythro threo = 5 to 1.4 1) [332]. This selectivity is in accord with a protonation of the intermediate anion, formed in an ECE sequence, from the least hindered side (Fig. 61). [Pg.436]

A robust and highly active catalyst for water-phase, acid-catalyzed THs of carbonyl compounds at pH 2.0-3.0 at 70 °C was disclosed by Ogo and coworkers [60]. The water-soluble hydride complex [Cp lr(bipy)H] (72, Cp = Tl -CsMes, bipy = 2,2 -bipyridine) was synthesized from the reaction of [Cp lr(bipy)(H20)] (73) with HCOOX (X = H or Na) in H2O under controlled pH conditions (2.0 < pH < 6.0, 25 °C). The pH control is pivotal in avoiding protonation of the hydrido ligand of 72 below pH ca. 1.0 and deprotonation of the aquo ligand of 73 above pH ca. 6.0. The rate of the reaction is heavily dependent on the pH of the solution, the reaction temperature, and the concentration of HCOOH. High TOFs of the acid-catalyzed transfer hydrogenations at pH 2.0-3.0, ranging from 150 to 525 h, were observed for a variety of linear and cyclic ketones, as summarized in Table 4.5. [Pg.80]

These compounds ionize and act as sources of hydride and amide ions respectively, which are able to remove a-protons from carbonyl compounds. These ions are actually the conjugate bases of hydrogen and ammonia respectively, compounds that are very weak acids indeed. What becomes important here is that enolate anion formation becomes essentially irreversible the enolate anion formed is insufficiently basic to be able to remove... [Pg.359]

Radical-anions of carbonyl compounds are basic and undergo protonation at the oxygen centre generating highly reactive radical species. [Pg.331]

Electrocatalytic hydrogenation is also achieved by reaction of carbonyl compounds with aluminium and nickel(ll) chloride in tetrahydrofuran. Nickel(li) is reduced to finely divided nickel(o) which is deposited on the aluminium.This se-tsup corrosion cells where aluminium dissolves, liberating electrons which are transferred to the nickel. Protons are then reduced to hydrogen at the nickel surface. Hydrogenation of benzaldehydes to the alcohol has been effected under these conditions [206]. [Pg.364]

Imines and iminium ions are nitrogen analogs of carbonyl compounds, and they undergo nucleophilic additions like those involved in aldol condensations. The reactivity order is C=NR < C=0 < [C=NR2] + < [C=OH] +. Because iminium ions are more reactive than imines, condensations involving imines are frequently run under acidic conditions where the imine is protonated. [Pg.96]

When two molecules of ester undergo a condensation reaction, the reaction is called a Claisen condensation. Claisen condensation, like the aldol condensation, requires a strong base. However, aqueous NaOH cannot be used in Claisen condensation, because the ester can be hydrolysed by aqueous base. Therefore, most commonly used bases are nonaqueous bases, e.g. sodium ethoxide (NaOEt) in EtOH and sodium methoxide (NaOMe) in MeOH. The product of a Claisen condensation is a P-ketoester. As in the aldol condensation, one molecule of carbonyl compound is converted to an enolate anion when an a-proton is removed by a strong base, e.g. NaOEt. [Pg.253]

Regeneration of carbonyl compounds from 5-(2-pyridyl)-l,3-dioxanes [75] can be effected by A-methylation and treatment with a mild base. The picolyl carbon is a donor site, and the loss of a proton from that position is facile. [Pg.99]

Basicity in the gas phase is measured by the proton affinity (PA) of the electron donor and in solution by the pAj,. A solution basicity scale for aldehydes and ketones based on hydrogen bond acceptor ability has also been established [186]. Nucleophilicity could be measured in a similar manner, in the gas phase by the affinity for a particular Lewis acid (e.g., BF3) and in solution by the equilibrium constant for the complexation reaction. In Table 8.1 are collected the available data for a number of oxygen systems. It is clear from the data in Table 8.1 that the basicities of ethers and carbonyl compounds, as measured by PA and p , are similar. However, the nucleophilicity, as measured by the BF3 affinity, of ethers is greater than that of carbonyl compounds, the latter values being depressed by steric interactions. [Pg.123]


See other pages where Protonation of Carbonyl Compounds is mentioned: [Pg.143]    [Pg.768]    [Pg.813]    [Pg.817]    [Pg.813]    [Pg.817]    [Pg.608]    [Pg.370]    [Pg.362]    [Pg.244]    [Pg.143]    [Pg.768]    [Pg.813]    [Pg.817]    [Pg.813]    [Pg.817]    [Pg.608]    [Pg.370]    [Pg.362]    [Pg.244]    [Pg.10]    [Pg.470]    [Pg.495]    [Pg.64]    [Pg.325]    [Pg.103]    [Pg.1]    [Pg.103]    [Pg.310]    [Pg.266]    [Pg.243]   


SEARCH



Attack of Carbonyl Compounds and Protons on Olefin Complexes

Carbonyl compounds protonation

Carbonyl, protonated

Compounds protons

Protonation compounds

© 2024 chempedia.info