Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proton exchange membranes development

In situ NMR Investigation of electrocatalytic mechanism and degradation mechanism of proton exchange membranes, development of electrocatalysts h, H, Pt... [Pg.155]

GE develops Proton Exchange Membrane (PEM) y Fuel Gell for NASA s Gemini Program (1966)... [Pg.522]

The most promising fuel cell for transportation purposes was initially developed in the 1960s and is called the proton-exchange membrane fuel cell (PEMFC). Compared with the PAFC, it has much greater power density state-of-the-art PEMFC stacks can produce in excess of 1 kWA. It is also potentially less expensive and, because it uses a thin solid polymer electrolyte sheet, it has relatively few sealing and corrosion issues and no problems associated tvith electrolyte dilution by the product water. [Pg.528]

The authors developed a multi-layered microreactor system with a methanol reforma- to supply hydrogen for a small proton exchange membrane fiiel cell (PEMFC) to be used as a power source for portable electronic devices [6]. The microreactor consists of four units (a methanol reformer with catalytic combustor, a carbon monoxide remover, and two vaporizers), and was designed using thermal simulations to establish the rppropriate temperature distribution for each reaction, as shown in Fig. 3. [Pg.67]

The catalysts at the anode can be made less sensitive to CO poisoning by alloying platinum with other metals such as ruthenium, antimony or tin[N.M. Markovic and P.N. Ross, New Flectro catalysts for fuel cells CATTECH 4 (2001) 110]. There is a clear demand for better and cheaper catalysts. Another way to circumvent the CO problem is to use proton-exchange membranes that operate at higher temperatures, where CO desorbs. Such membranes have been developed, but are not at present commercially available. [Pg.344]

These main objectives can be reached only by modifying the structures and compositions of primarily the anode (methanol electrode) and secondarily the cathode (oxygen electrode) as discussed in Sections 111 and IV, respectively. In addition. Section IV discusses the conception of new proton exchange membranes with lower methanol permeability in order to improve the cathode characteristics. Section V deals with the progress in the development of DMFCs, while in Section VI the authors attempt to make a prognosis on the status of DMFC R D and its potential applications. [Pg.73]

Membrane-type fuel cells. The electrolyte is a polymeric ion-exchange membrane the working temperatures are 60 to 100°C. Such systems were first used in Gemini spaceships. These fuel cells subsequently saw a rather broad development and are known as (solid) polymer electrolyte or proton-exchange membrane fuel cells (PEMFCs). [Pg.362]

Following a period of slack, decisive improvements were made after 1990 in the area of PEMFCs. Modem models now achieve specific powers of over 600 to 800 mW/cm while using less than 0.4 mg/cm of platinum catalysts and offering a service fife of several tens of thousands of hours. These advances were basically attained by the combination of two factors (1) using new proton-exchange membranes of the Nafion type, and (2) developing ways toward much more efficient utilization of the platinum catalysts in the electrodes. [Pg.364]

Ambient temperature catalysis of O2 reduction at low overpotentials is a challenge in development of conventional proton exchange membrane fuel cells (pol5mer electrolyte membrane fuel cells, PEMFCs) [Ralph and Hogarth, 2002]. In this chapter, we discuss two classes of enz5mes that catalyze the complete reduction of O2 to H2O multi-copper oxidases and heme iron-containing quinol oxidases. [Pg.604]

The spurred impetus has been given to developing non pollutant vehicles, and consequently, the clean cars driven by the fuel cells loading proton exchange membranes (PEMFC), which based upon Nafion, have been surprisingly developed. A promising less pollutant and economical system is also expected, which will be the on site cogeneration system of electric power and the hot water supply with use of fuel cells combined with city gas pipe-lines. [Pg.3]

This survey focuses on recent developments in catalysts for phosphoric acid fuel cells (PAFC), proton-exchange membrane fuel cells (PEMFC), and the direct methanol fuel cell (DMFC). In PAFC, operating at 160-220°C, orthophosphoric acid is used as the electrolyte, the anode catalyst is Pt and the cathode can be a bimetallic system like Pt/Cr/Co. For this purpose, a bimetallic colloidal precursor of the composition Pt50Co30Cr20 (size 3.8 nm) was prepared by the co-reduction of the corresponding metal salts [184-186], From XRD analysis, the bimetallic particles were found alloyed in an ordered fct-structure. The elecbocatalytic performance in a standard half-cell was compared with an industrial standard catalyst (bimetallic crystallites of 5.7 nm size) manufactured by co-precipitation and subsequent annealing to 900°C. The advantage of the bimetallic colloid catalysts lies in its improved durability, which is essential for PAFC applicabons. After 22 h it was found that the potential had decayed by less than 10 mV [187],... [Pg.84]

A potential problem with the proton exchange membrane (PEM) fuel cell, which is the type being developed for automobiles is life span. Internal combustion engines have an average life span of 15 years, or about 170,000 miles. Membrane deterioration can cause PEM fuel cells to fail after 2,000 hours or less than 100,000 miles. [Pg.36]

All fuel cells for use in vehicles are based on proton-exchange-membrane fuel cell (PEMFC) technology. The methanol fuel-processor fuel cell (FPFC) vehicle comprises an on-board fuel processor with downstream PEMFC. On-board methanol reforming was a development focus of industry for a number of years until around 2002. Direct-methanol fuel cells (DMFC) are no longer considered for the propulsion of commercial vehicles in the industry (see also Chapter 13). [Pg.224]

We discuss both the Proton Exchange Membrane as well as the Solid Oxide Fuel Cells in this chapter (PEMFC and SOFC). Both types are in full development, the PEMFC for mobile and stationary applications, and the SOFC for stationary applications as well as for auxiliary power generation for transport. [Pg.301]

The PEMFC (Proton Exchange Membrane Fuel Cell) is a fuel cell with a protonconducting fluorinated polymer as electrolyte. Figure 14.12 gives a schematic drawing of the PEMFC. At the anode, hydrogen is oxidized to protons. At the cathode, oxygen from air is reduced to water. The PEMFC is in development for various applications. [Pg.319]

One of the earliest proton exchange membranes was based on sulfonated polystyrene where divinylbenzene was used as a cross-linking unit for extra stability. Developed by General Electric, this membrane (21) was cheap and easy to manufacture, and it was used for fuel cells in the Gemini space pro-gram.i However, due to the sensitivity of the benzylic hydrogen to radical attack, lifetimes for these membranes under FC operating conditions were quite low. Thus, little work has been carried out on these systems since their inception. [Pg.149]

Various types of fuel cells have been developed to generate power according to the applications and load requirements (Chaurasia, 2000). There are several types of electrolyte, which plays a key role in the different types of fuel cells. It must permit only the appropriate ions to pass between the anode and cathode. The main electrolyte types are alkali, molten carbonate, phosphoric acid, proton exchange membrane (PEM), and solid oxide. The first three are liquid electrolytes, the last two are solids. [Pg.226]


See other pages where Proton exchange membranes development is mentioned: [Pg.370]    [Pg.335]    [Pg.370]    [Pg.335]    [Pg.214]    [Pg.450]    [Pg.637]    [Pg.343]    [Pg.60]    [Pg.67]    [Pg.99]    [Pg.99]    [Pg.343]    [Pg.362]    [Pg.366]    [Pg.328]    [Pg.486]    [Pg.3]    [Pg.306]    [Pg.105]    [Pg.175]    [Pg.160]    [Pg.12]    [Pg.243]    [Pg.38]    [Pg.124]    [Pg.447]    [Pg.458]    [Pg.48]    [Pg.223]    [Pg.348]   
See also in sourсe #XX -- [ Pg.315 ]




SEARCH



Membranes development

Proton exchange

Proton exchange membran

Proton exchange membrane fuel cells companies developing

© 2024 chempedia.info