Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proteins emulsion stability

Non-dairy creams (cream alternatives) are O/W emulsions stabilized by milk proteins. A relatively thick adsorption layer provides stability, mostly by steric stabilization and partly by electrostatic stabilization [829]. Figure 13.3 shows an example of a soybean-oil and milk-protein emulsion stabilized by fat globules and protein membranes. Stabilizers, such as hydrocolloid polysaccharides, are added to increase the continuous phase viscosity and reduce the extent of creaming. They must be stable enough to have a useful shelf-life but de-stabilize in a specific way when they are... [Pg.308]

Multiple regression analysis performed for succinylated rapeseed protein isolates indicated that emulsification activity was related to protein solubility, hydrophobicity, zeta potential, and flow behavior of aqueous dispersions of the proteins. Emulsion stability was affected by protein solubility, zeta potential, apparent viscosity of protein dispersions, and difference in density between aqueous and oil phases [76],... [Pg.75]

Rheological measurements were carried out to investigate the rheological properties of emulsions stabilized by different fat-water interfaces and the influence of fat droplets on the formation of the protein networks during a process of gelation. [Pg.278]

The elastic modulus (G ) of MP, BCAS, and BLG5 rapidly rose to plateaus that corresponded to different G saturations (Gjat) (Table 2). MP and BCAS coagula showed the more important Gsat value (142 N/m ), meaning that the emulsions stabilized by skim milk proteins (mainly casein micelles) and 6-casein formed the coagula with the strongest protein network. [Pg.279]

T.D. Dimitrova, F. Leal-Calderon, T.D. Gurkov, and B. Campbell Surface Forces in Model Oil-in-Water Emulsions Stabilized by Proteins. Adv. Colloid Interface Sci. 108-109, 73 (2004). [Pg.102]

McClements, 2006 Anal et al., 2008). Different combinations of proteins and polysaccharides (e.g., P-lactoglobulin + pectin, carrageenan or alginate casein + pectin) have been investigated within the context of multilayer emulsion stabilization (Guzey and McClements, 2006). It seems that the main technical challenge associated with the utilization such complex formation for layer-by-layer emulsion stabilization is the avoidance of bridging flocculation (McClements, 2005, 2006). [Pg.24]

Dickinson, E. (2001). Milk protein adsorbed layers and the relationship to emulsion stability and rheology. Studies in Surface Science and Catalysis, 132, 973-978. [Pg.71]

Figure 3.4 Effect of polysaccharide on protein-stabilized emulsions. The diameter ratio, j43nuxtlire / J43protem is plotted against the molar ratio R (moles polysaccharide / moles protein). Here J43nuxtlire is average droplet diameter in fresh emulsion prepared with protein + polysaccharide, and d43pTOtQm is average diameter in emulsion stabilized by protein alone. Key , , legumin + dextmn (48 kDa) or legumin + dextran (500 kDa), respectively (0.5 w/v % protein, 10 vol% oil, pH = 8.0, /= 0.1 M) (Dickinson and Semenova, 1992) O, , asi-casein + pectinate and p-casein + pectinate at pH = 7.0, / = 0.01 M (2.0 w/v % protein, 40 vol% oil), respectively , p-casein + pectinate at pH = 5.5, / = 0.01 M (2.0 w/v % protein, 40 vol% oil) (Semenova et al, 1999). Reproduced from Semenova (2007) with permission. Figure 3.4 Effect of polysaccharide on protein-stabilized emulsions. The diameter ratio, j43nuxtlire / J43protem is plotted against the molar ratio R (moles polysaccharide / moles protein). Here J43nuxtlire is average droplet diameter in fresh emulsion prepared with protein + polysaccharide, and d43pTOtQm is average diameter in emulsion stabilized by protein alone. Key , , legumin + dextmn (48 kDa) or legumin + dextran (500 kDa), respectively (0.5 w/v % protein, 10 vol% oil, pH = 8.0, /= 0.1 M) (Dickinson and Semenova, 1992) O, , asi-casein + pectinate and p-casein + pectinate at pH = 7.0, / = 0.01 M (2.0 w/v % protein, 40 vol% oil), respectively , p-casein + pectinate at pH = 5.5, / = 0.01 M (2.0 w/v % protein, 40 vol% oil) (Semenova et al, 1999). Reproduced from Semenova (2007) with permission.
Figure 3.5 Demonstration of correlation between the stickiness of protein-coated droplet pair encounters in shear flow (left ordinate axis) and viscoelasticity of concentrated emulsions (right ordinate axis) with the strength of protein-protein attraction as indicated by the second virial coefficient A2 determined from static light scattering , percentage capture efficiency (0%) A, complex shear modulus (G ) for emulsions stabilized by asl-casein or (3-casein (pH = 5.5, ionic strength in the range 0.01-0.2 M). Figure 3.5 Demonstration of correlation between the stickiness of protein-coated droplet pair encounters in shear flow (left ordinate axis) and viscoelasticity of concentrated emulsions (right ordinate axis) with the strength of protein-protein attraction as indicated by the second virial coefficient A2 determined from static light scattering , percentage capture efficiency (0%) A, complex shear modulus (G ) for emulsions stabilized by asl-casein or (3-casein (pH = 5.5, ionic strength in the range 0.01-0.2 M).
Dickinson, E., Galazka, V.B. (1992). Emulsion stabilization by protein-polysaccharide complexes. In Phillips, G.O., Wedlock, D.J., Williams, P.A. (Eds). Gums and Stabilisers for the Food Industry 6, Oxford IRL Press, pp. 351-362. [Pg.109]

Dickinson, E. (1998). Proteins at interfaces and in emulsions stability, rheology and interactions. Journal of the Chemical Society, Faraday Transactions, 94, 1657-1669. [Pg.221]

Ye, A., Singh, H. (2000b). Influence of calcium chloride addition on the properties of emulsions stabilized by whey protein concentrate. Food Hydrocolloids, 14, 337-346. [Pg.231]

Table 7.1 shows that rather similar results were also found by Makri et al. (2005) for samples of coarse emulsions containing thermodynamically incompatible mixtures of legume seed protein + xanthan gum. The protein surface load was found to be enhanced in the presence of xanthan gum, especially at elevated ionic strengths. That is, there was observed to be an increase in the adsorption of legume seed proteins at the surface of the emulsion droplets which could be attributed to an increase in the thermodynamic activity of the proteins in the system in the presence of the incompatible polysaccharide (see Table 7.1). Associated with the greater extent of protein adsorption, the authors reported an enhancement in the emulsion stability. Table 7.1 shows that rather similar results were also found by Makri et al. (2005) for samples of coarse emulsions containing thermodynamically incompatible mixtures of legume seed protein + xanthan gum. The protein surface load was found to be enhanced in the presence of xanthan gum, especially at elevated ionic strengths. That is, there was observed to be an increase in the adsorption of legume seed proteins at the surface of the emulsion droplets which could be attributed to an increase in the thermodynamic activity of the proteins in the system in the presence of the incompatible polysaccharide (see Table 7.1). Associated with the greater extent of protein adsorption, the authors reported an enhancement in the emulsion stability.
The presence of a thermodynamically incompatible polysaccharide in the aqueous phase can enhance the effective protein emulsifying capacity. The greater surface activity of the protein in the mixed biopolymer system facilitates the creation of smaller emulsion droplets, i.e., an increase in total surface area of the freshly prepared emulsion stabilized by the mixture of thermodynamically incompatible biopolymers (see Figure 3.4) (Dickinson and Semenova, 1992 Semenova el al., 1999a Tsapkina et al., 1992 Makri et al., 2005). It should be noted, however, that some hydrocolloids do cause a reduction in the protein emulsifying capacity by reducing the protein adsorption efficiency as a result of viscosity effects. [Pg.245]

In a recent study by Sun et al. (2007) of 20 vol% oil-in-water emulsions stabilized by 2 wt% whey protein isolate (WPI), the influence of addition of incompatible xanthan gum (XG) was investigated at different concentrations. It was demonstrated that polysaccharide addition had no significant effect on the average droplet size (d32). But emulsion microstructure and creaming behaviour indicated that the degree of flocculation was a sensitive function of XG concentration with no XG present, there was no flocculation, for 0.02-0.15 wt% XG, there was a limited... [Pg.246]

Sun, C., Gunasekaran, S., Richards, M.P. (2007). Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocolloids, 21, 555-564. [Pg.303]

Dickinson, E. (1997). Properties of emulsions stabilized with milk proteins overview of some recent developments. Journal of Dairy Science, 80, 2607-2619. [Pg.309]

Cornec, M., Wilde, P.J., Gunning, P.A., Mackie, A.R., Husband, F.A., Parker, M.L., Clark, D.C. (1998). Emulsion stability as affected by competitive adsorption between an oil-soluble emulsifier and milk proteins at the interface. Journal of Food Science, 63, 39 13. [Pg.346]


See other pages where Proteins emulsion stability is mentioned: [Pg.413]    [Pg.1719]    [Pg.413]    [Pg.1719]    [Pg.280]    [Pg.81]    [Pg.86]    [Pg.6]    [Pg.82]    [Pg.84]    [Pg.167]    [Pg.104]    [Pg.237]    [Pg.350]    [Pg.66]    [Pg.72]    [Pg.97]    [Pg.161]    [Pg.195]    [Pg.215]    [Pg.217]    [Pg.245]    [Pg.247]    [Pg.249]    [Pg.313]    [Pg.318]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



Emulsion proteins

Emulsion stability

Emulsion stability, effect proteins

Emulsion stabilization

Emulsion stabilizers

Emulsion stabilizing

Emulsions protein stabilization

Food emulsions protein-stabilized

Non-protein-stabilized emulsions

Protein stabilization

Protein-stabilized emulsions

Protein-stabilized emulsions

Protein-stabilized emulsions emulsion

Protein-stabilized emulsions emulsion

Proteins stabilizers

Whey protein emulsion stabilization

© 2024 chempedia.info