Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein-nucleic acid interactions solvent

To date, a number of simulation studies have been performed on nucleic acids and proteins using both AMBER and CHARMM. A direct comparison of crystal simulations of bovine pancreatic trypsin inliibitor show that the two force fields behave similarly, although differences in solvent-protein interactions are evident [24]. Side-by-side tests have also been performed on a DNA duplex, showing both force fields to be in reasonable agreement with experiment although significant, and different, problems were evident in both cases [25]. It should be noted that as of the writing of this chapter revised versions of both the AMBER and CHARMM nucleic acid force fields had become available. Several simulations of membranes have been performed with the CHARMM force field for both saturated [26] and unsaturated [27] lipids. The availability of both protein and nucleic acid parameters in AMBER and CHARMM allows for protein-nucleic acid complexes to be studied with both force fields (see Chapter 20), whereas protein-lipid (see Chapter 21) and DNA-lipid simulations can also be performed with CHARMM. [Pg.13]

OPTS (Optim i/.ed Potentials for Liquid Simulations) is based on a force field developed by the research group of Bill Jorgensen now at Yale University and previously at Purdue University. Like AMBER, the OPLS force field is designed for calculations on proteins an d nucleic acids. It in troduces non bonded in leraclion parameters that have been carefully developed from extensive Monte Carlo liquid sim u lation s of small molecules. These n on-bonded interactions have been added to the bonding interactions of AMBER to produce a new force field that is expected to be better than AMBER at describing simulations w here the solvent isexplic-... [Pg.191]

One important class of integral equation theories is based on the reference interaction site model (RISM) proposed by Chandler [77]. These RISM theories have been used to smdy the confonnation of small peptides in liquid water [78-80]. However, the approach is not appropriate for large molecular solutes such as proteins and nucleic acids. Because RISM is based on a reduction to site-site, solute-solvent radially symmetrical distribution functions, there is a loss of infonnation about the tliree-dimensional spatial organization of the solvent density around a macromolecular solute of irregular shape. To circumvent this limitation, extensions of RISM-like theories for tliree-dimensional space (3d-RISM) have been proposed [81,82],... [Pg.144]

Treatment with hot organic solvents was the next step in the tissue fractionation, to remove lipid-phosphorous and breakdown lipid-protein interactions. In the Schneider procedure, nucleic acids were then extracted in hot dilute trichloroacetic or perchloric acid, leaving a protein residue with any phosphoprotein links still intact. This method was to become particularly useful when 3H thymidine became the preferred label for DNA in the early 1960s. For investigations where both RNA and DNA were to be examined the Schmidt-Thannhauser process was often chosen. Here the lipid-extracted material was hydrolyzed with dilute sodium hydroxide releasing RNA nucleotides and any hydroxyamino acid bound phosphorus. DNA could be precipitated from the extract but the presence in the alkaline hydrolysate of the highly labeled phosphate released from phosphoprotein complicated... [Pg.137]

Numerous weak, noncovalent interactions decisively influence the folding of macromolecules such as proteins and nucleic acids. The most stable macromolecular conformations are those in which hydrogen bonding is maximized within the molecule and between the molecule and the solvent, and in which hydrophobic moieties cluster in the interior of the molecule away from the aqueous solvent. [Pg.58]

In protein crystals, due to the large size of the molecule, the empty space can have cross sections of 10-15 A or greater. The empty space between the protein molecules is occupied by mother liquor. This property of protein crystals, shared by nucleic acids and viruses, is otherwise unique among the crystal structures. In fact, the values of the packing coefficient of protein crystals range from 0.7 to 0.2, but the solvent molecules occupy the empty space so that the total packing coefficient is close to 1 [37]. Nevertheless, a detailed theoretical study has been carried out to examine the models of DNA-DNA molecular interactions on the basis of hard-sphere contact criteria. The hard-sphere computations are insufficient for qualitative interpretation of the packing of DNA helices in the solid state, but... [Pg.310]

In order to determine to what extent these speculations have validity, it is necessary to be able to evaluate more quantitatively the relative contributions of these interactions to the free energies of protein and nucleic acid molecules in water and nonaqueous solvents. For this purpose, a substantial body of quantitative data is required concerning the properties of suitable model compounds in a variety of solvents, including their solubilities, acid-base dissociation constants, and thermodynamics of hydrogen bond formation. The dearth of pertinent data on hydrogen bonds in solvents of interest is particularly frustrating to even a semiquantitative evaluation of the scheme presented in Fig. 7. [Pg.58]


See other pages where Protein-nucleic acid interactions solvent is mentioned: [Pg.373]    [Pg.283]    [Pg.199]    [Pg.454]    [Pg.47]    [Pg.199]    [Pg.274]    [Pg.199]    [Pg.47]    [Pg.54]    [Pg.47]    [Pg.7]    [Pg.419]    [Pg.431]    [Pg.120]    [Pg.168]    [Pg.275]    [Pg.478]    [Pg.96]    [Pg.273]    [Pg.106]    [Pg.237]    [Pg.442]    [Pg.452]    [Pg.100]    [Pg.106]    [Pg.102]    [Pg.70]    [Pg.138]    [Pg.130]    [Pg.119]    [Pg.312]    [Pg.406]    [Pg.47]    [Pg.1266]    [Pg.129]    [Pg.156]    [Pg.416]    [Pg.258]    [Pg.680]    [Pg.315]    [Pg.47]   
See also in sourсe #XX -- [ Pg.3 , Pg.2221 ]




SEARCH



Acids solvents

Nucleic acid interactions

Nucleic acid protein interactions

Protein solvents

Proteins nucleic acids

Solvent-protein interactions

Solvents acidic

Solvents acidity

Solvents, interactive

© 2024 chempedia.info