Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

05,6 protection, acetal protecting group

Six protective groups for alcohols, which may be removed successively and selectively, have been listed by E.J. Corey (1972B). A hypothetical hexahydroxy compound with hydroxy groups 1 to 6 protected as (1) acetate, (2) 2,2,2-trichloroethyl carbonate, (3) benzyl ether, (4) dimethyl-t-butylsilyl ether, (5) 2-tetrahydropyranyl ether, and (6) methyl ether may be unmasked in that order by the reagents (1) KjCO, or NH, in CHjOH, (2) Zn in CHjOH or AcOH, (3) over Pd, (4) F", (5) wet acetic acid, and (6) BBrj. The groups may also be exposed to the same reagents in the order A 5, 2, 1, 3, 6. The (4-methoxyphenyl)methyl group (=MPM = p-methoxybenzyl, PMB) can be oxidized to a benzaldehyde derivative and thereby be removed at room temperature under neutral conditions (Y- Oikawa, 1982 R. Johansson, 1984 T. Fukuyama, 1985). [Pg.157]

We shall describe a specific synthetic example for each protective group given above. Regiosdective proteaion is generally only possible if there are hydroxyl groups of different sterical hindrance (prim < sec < tert equatorial < axial). Acetylation has usually been effected with acetic anhydride. The acetylation of less reactive hydroxyl groups is catalyzed by DMAP (see p.l44f.). Acetates are stable toward oxidation with chromium trioxide in pyridine and have been used, for example, for protection of steroids (H.J.E. Loewenthal, 1959), carbohydrates (M.L. Wolfrom, 1963 J.M. Williams, 1967), and nucleosides (A.M. Micbelson, 1963). The most common deacetylation procedures are ammonolysis with NH in CH OH and methanolysis with KjCO, or sodium methoxide. [Pg.158]

Trichloro- and 2,2,2-tribromoethoxycarbonyl (Tceoc and Tbeoc) protecting groups are introduced with the commercially available 2,2,2-trihaloethyl chloroformates. These derivatives are stable towards CrOj and acids, but can smoothly be cleaved by reduction with zinc in acetic acid at 20 °C to yield 1,1-dihaloethene and CO. Several examples in lipid (F.R. Pfeiffer, 1968, 1970) and nucleotide syntheses (A.F. Cook, 1968) have been described. [Pg.158]

Since (A) does not contain any other functional group in addition to the formyl group, one may predict that suitable reaction conditions could be found for all conversions into (A). Many other alternative target molecules can, of course, be formulated. The reduction of (H), for example, may require introduction of a protecting group, e.g. acetal formation. The industrial synthesis of (A) is based upon the oxidation of (E) since 3-methylbutanol (isoamyl alcohol) is a cheap distillation product from alcoholic fermentation ( fusel oils ). The second step of our simple antithetic analysis — systematic disconnection — will now be exemplified with all target molecules of the scheme above. For the sake of brevity we shall omit the syn-thons and indicate only the reagents and reaction conditions. [Pg.198]

Alternatively the benzyloxycarbonyl protecting group may be removed by treat ment with hydrogen bromide m acetic acid... [Pg.1138]

Step 2 The Boc protecting group is removed by treatment with hydrochloric acid m dilute acetic acid After the resin has been washed the C terminal ammo acid IS ready for coupling... [Pg.1143]

Removal of the ketal protecting groups, followed by oxidation with sodium dichromate ia acetic acid gave... [Pg.101]

Pos twe-Tone Photoresists. The ester, carbonate, and ketal acidolysis reactions which form the basis of most positive tone CA resists are thought to proceed under specific acid catalysis (62). In this mechanism, illustrated in Figure 22 for the hydrolysis of tert-huty acetate (type A l) (63), the first step involves a rapid equihbrium where the proton is transferred between the photogenerated acid and the acid-labile protecting group ... [Pg.126]

Mocimycin has been chemically converted to aurodox by protection of the 4-hydroxy group at the pyridone moiety as the benzoylformate, followed by /V-methylation and hydrolytic removal of the protective group (1,55). Whereas aurodox esters are active growth promotors in animals, goldinamines that are A/-acylated by acids other than goldinonic acid, such as acetic, benzoic, or arylsulfonic acids, lack useful antimicrobial or growth-promoting activity (1). [Pg.524]

Since a few protective groups cannot satisfy all these criteria for elaborate substrates, a large number of mutually complementary protective groups are needed and, indeed, are becoming available. In early syntheses the chemist chose a standard derivative known to be stable to the subsequent reactions. In a synthesis of callistephin chloride the phenolic —OH group in 1 was selectively protected as an acetate. In the presence of silver ion the aliphatic hydroxyl group in 2 displaced... [Pg.1]

As chemists proceeded to synthesize more complicated stmctures, they developed more satisfactory protective groups and more effective methods for the formation and cleavage of protected compounds. At first a tetrahydropyranyl acetal was prepared, by an acid-catalyzed reaction with dihydropyran, to protect a hydroxyl group. The acetal is readily cleaved by mild acid hydrolysis, but formation of this acetal introduces a new stereogenic center. Formation of the 4-methoxytetrahy-dropyranyl ketal eliminates this problem. [Pg.2]

The ability to convert a protective group to another functional group directly without first performing a deprotection is a potentially valuable transformation. Silyl-protected alcohols have been converted directly to aldehydes, ketones, bro-mides, acetates, and ethers without first liberating the alcohol in a prior deprotection step. [Pg.87]

Cyclic carbonates and cyclic boronates have also found considerable use as protective groups. In contrast to most acetals and ketals the carbonates are cleaved with strong base and sterically unencumbered boronates are readily cleaved by water. [Pg.119]

A benzylidene acetal is a commonly used protective group for 1,2- and 1,3-diols. In the case of a 1,2,3-triol the 1,3-acetal is the preferred product. It has the advantage that it can be removed under neutral conditions by hydrogenolysis or by acid hydrolysis. Benzyl groups and isolated olefins have been hydrogenated in the presence of 1,3-benzylidene acetals. Benzylidene acetals of 1,2-diols are more susceptible to hydrogenolysis than are those of 1,3-diols. In fact, the former can be removed in the presence of the latter. A polymer-bound benzylidene acetal has also been prepared." ... [Pg.128]

The p-methoxybenzylidene acetal is a versatile protective group for diols tl undergoes acid hydrolysis 10 times faster than the benzylidene group. ... [Pg.132]

Historically, simple Vz-alkyl ethers formed from a phenol and a halide or sulfate were cleaved under rather drastic conditions (e.g., refluxing HBr). New ether protective groups have been developed that are removed under much milder conditions (e.g., via nucleophilic displacement, hydrogenolysis of benzyl ethers, and mild acid hydrolysis of acetal-type ethers) that seldom affect other functional groups in a molecule. [Pg.145]

Hg(OAc)2, H2O, 80% AcOH, HSCH2CH2SH, 25°, 5-20 min H2S, 2 h, high yield. The removal of an 5-benzylthiomethyl protective group from a dithioacetal with mercuiy(II) acetate avoids certain side reactions that occur when an 5-benzyl thioether is cleaved with sodium/ammonia. The dithioacetal is stable to hydrogen bromide/acetic acid used to cleave benzyl carbamates. [Pg.291]

Many carbamates have been used as protective groups. They are arranged in this chapter in order of increasing complexity of stmcture. The most useful compounds do not necessarily have the simplest stmctures, but are /-butyl (BOC), readily cleaved by acidic hydrolysis benzyl (Cbz or Z), cleaved by catalytic hy-drogenolysis 2,4-dichlorobenzyl, stable to the acid-catalyzed hydrolysis of benzyl and /-butyl carbamates 2-(biphenylyl)isopropyl, cleaved more easily than /-butyl carbamate by dilute acetic acid 9-fluorenylmethyl, cleaved by /3-elimination with base isonicotinyl, cleaved by reduction with zinc in acetic acid 1-adamantyl, readily cleaved by trifluoroacetic acid and ally], readily cleaved by Pd-catalyzed isomerisation. [Pg.316]

Selectivity in formation of protective groups may also be achieved by a proper choice of reaction conditions and catalyst. Thus formation of the 3-monothioketal from 3,6-diketones is achieved by dilution of the ethane-dithiol-boron trifluoride reaction mixture with acetic acid. 3-Monocyanohydrins are obtained in good yield from 3,20-diketo-(5a)-pregnanes by diluting the exchange reaction with ethanol. Similarly, dilution of the... [Pg.378]


See other pages where 05,6 protection, acetal protecting group is mentioned: [Pg.160]    [Pg.224]    [Pg.268]    [Pg.723]    [Pg.723]    [Pg.723]    [Pg.724]    [Pg.126]    [Pg.464]    [Pg.362]    [Pg.240]    [Pg.433]    [Pg.282]    [Pg.398]    [Pg.144]    [Pg.6]    [Pg.35]    [Pg.145]    [Pg.177]    [Pg.226]    [Pg.38]    [Pg.85]    [Pg.86]    [Pg.87]    [Pg.123]    [Pg.229]    [Pg.235]    [Pg.381]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Acetal group

Acetals, protection

Acetate groups

Acetous group

Protecting groups acetals

Protective groups acetal

© 2024 chempedia.info