Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protease groups

Thrombin (MW 39,000) is a proteolytic enzyme of the serine protease group. It is derived from prothrombin, a circulating plasma protein, through the proteolytic action of a complex consisting of the proteolytic enzyme factor X (or factor Xa), another protein called factor V (accelerator protein), calcium, and phospholipid. Factor V has recently been identified as the plasma copper protein ceruloplasmin or a similar protein (see Chapter 6). [Pg.186]

An impressive example of the application of structure-based methods was the design of a inhibitor of the HIV protease by a group of scientists at DuPont Merck [Lam et al. 1994 This enzyme is crucial to the replication of the HIV virus, and inhibitors have bee shown to have therapeutic value as components of anti-AIDS treatment regimes. The star1 ing point for their work was a series of X-ray crystal structures of the enzyme with number of inhibitors boimd. Their objective was to discover potent, novel leads whid were orally available. Many of the previously reported inhibitors of this enzyme possessei substantial peptide character, and so were biologically unstable, poorly absorbed am rapidly metabolised. [Pg.707]

An example of a direct spectrophotometrical assay is the use of synthetic peptide -nitroanilide substrates to determine protease activity. The /)-nitroani1ine group Hberated from the substrates by the protease can be determined spectrophotometricaHy at 410 nm. An example of an indirect (coupled) spectrophotometric assay is the determination of a-amylase using -nitrophenyLmaltoheptaoside. Initially, the substrate is cleaved by the a-amylase and subsequentiy one of the reaction products, -nitrophenyLmaltotrioside, is cleaved by a-glucosidase, hberating -nitrophenyl, a chromophore... [Pg.288]

A number of steroids have been regioselectively acylated ia a similar manner (99,104). Chromobactenum viscosum hpase esterifies 5a-androstane-3P,17P-diol [571-20-0] (75) with 2,2,2-triduoroethyl butyrate ia acetone with high selectivity. The hpase acylates exclusively the hydroxy group ia the 3-position giving the 3P-(monobutyryl ester) of (75) ia 83% yield. In contrast, bacillus subtilis protease (subtihsia) displays a marked preference for the C-17 hydroxyl. Candida iylindracea]i 2Lse (CCL) suspended ia anhydrous benzene regioselectively acylates the 3a-hydroxyl group of several bile acid derivatives (104). [Pg.342]

FIGURE 14.11 The pH activity profiles of four different enzymes. Trypsin, an intestinal protease, has a slightly alkaline pH optimnm, whereas pepsin, a gastric protease, acts in the acidic confines of the stomach and has a pH optimmn near 2. Papain, a protease found in papaya, is relatively insensitive to pHs between 4 and 8. Cholinesterase activity is pH-sensitive below pH 7 but not between pH 7 and 10. The cholinesterase pH activity profile suggests that an ionizable group with a pK near 6 is essential to its activity. Might it be a histidine residue within the active site ... [Pg.442]

X-ray crystallographic studies of serine protease complexes with transition-state analogs have shown how chymotrypsin stabilizes the tetrahedral oxyanion transition states (structures (c) and (g) in Figure 16.24) of the protease reaction. The amide nitrogens of Ser and Gly form an oxyanion hole in which the substrate carbonyl oxygen is hydrogen-bonded to the amide N-H groups. [Pg.519]

FIGURE 16.27 A mechanism for the aspartic proteases. In the first step, two concerted proton transfers facilitate nucleophilic attack of water on the substrate carbonyl carbon. In the third step, one aspartate residue (Asp" " in pepsin) accepts a proton from one of the hydroxyl groups of the amine dihydrate, and the other aspartate (Asp" ) donates a proton to the nitrogen of the departing amine. [Pg.521]

The first hint that two active-site carboxyl groups—one proto-nated and one ionized—might be involved in the catalytic activity of the aspartic proteases came from studies of the pH dependence of enzymatic activity. If an ionizable group in an enzyme active site is essential for activity, a plot of enzyme activity versus pH may look like one of the plots at right. [Pg.525]

The pH dependence of HIV-1 protease has been assessed by measuring the apparent inhibition constant for a synthetic substrate analog (b). The data are consistent with the catalytic involvement of ionizable groups with pK values of 3.3 and 5.3. Maximal enzymatic activity occurs in the pH range between these two values. On the basis of the accumulated kinetic and structural data on HIV-1 protease, these pK values have been ascribed to the... [Pg.525]

Wang, Y X., Freedberg, D. I., Yamazaki, T, et al., 1997. Soludon NMR evidence diat the HIV-1 protease catalytic aspartyl groups have different ionization. states in the complex formed with die a.symmetric drug KNI-272. [Pg.532]

The protease a-chymotrypsin has been used for transesterification reactions by two groups (Entries 7 and 8) [35, 36]. N-Acetyl-l-phenylalanine ethyl ester and N-acetyl-l-tyrosine ethyl ester were transformed into the corresponding propyl esters (Scheme 8.3-2). [Pg.341]

Amide hydrolysis is common in biological chemistry. Just as the hydrolysis of esters is the initial step in the digestion of dietary fats, the hydrolysis of amides is the initial step in the digestion of dietary proteins. The reaction is catalyzed by protease enzymes and occurs by a mechanism almost identical to that we just saw for fat hydrolysis. That is, an initial nucleophilic acyl substitution of an alcohol group in the enzyme on an amide linkage in the protein gives an acyl enzyme intermediate that then undergoes hydrolysis. [Pg.815]

More than 50 endogenous and exogenous inhibitors of the calpains have been described as either transition-state reversible or irreversible inhibitors. The first transition-state inhibitors were the peptide aldehydes (e.g., leupeptin). Using this compound, new ones were synthesized that exhibited improved membrane permeability and calpain specificity (e.g., calpeptin). Other groups of inhibitors have since been discovered a-dicarbonyls (originally developed as serine protease inhibitors), nonpeptide quinolinecarboxamides,... [Pg.313]

The sensitivity of the relevant rate constants to the groups at the different sites is demonstrated in Table 7.1. The cleavage of amides in the active site of serine protease can be described formally by the two successive steps ... [Pg.171]

The elucidation of the X-ray structure of chymotrypsin (Ref. 1) and in a later stage of subtilisin (Ref. 2) revealed an active site with three crucial groups (Fig. 7.1)-the active serine, a neighboring histidine, and a buried aspartic acid. These three residues are frequently called the catalytic triad, and are designated here as Aspc Hisc Serc (where c indicates a catalytic residue). The identification of the location of the active-site groups and intense biochemical studies led to several mechanistic proposals for the action of serine proteases (see, for example, Refs. 1 and 2). However, it appears that without some way of translating the structural information to reaction-potential surfaces it is hard to discriminate between different alternative mechanisms. Thus it is instructive to use the procedure introduced in previous chapters and to examine the feasibility of different... [Pg.171]


See other pages where Protease groups is mentioned: [Pg.160]    [Pg.284]    [Pg.160]    [Pg.284]    [Pg.99]    [Pg.1130]    [Pg.1291]    [Pg.183]    [Pg.249]    [Pg.146]    [Pg.15]    [Pg.285]    [Pg.302]    [Pg.341]    [Pg.9]    [Pg.260]    [Pg.1130]    [Pg.276]    [Pg.428]    [Pg.520]    [Pg.522]    [Pg.523]    [Pg.524]    [Pg.101]    [Pg.430]    [Pg.333]    [Pg.103]    [Pg.328]    [Pg.331]    [Pg.673]    [Pg.692]    [Pg.705]    [Pg.745]    [Pg.986]    [Pg.204]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Enzymes groups proteases

Look up the names of both individual drugs and their drug groups to access full information HIV-protease inhibitors

Look up the names of both individual drugs and their drug groups to access full information Protease inhibitors

Prosthetic group protease

Proteases mechanistic groups

Proteases phthaloyl group removal

Serine proteases binding groups

© 2024 chempedia.info