Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protactinium extraction

However, the quantity of Pa produced in this manner is much less than the amount (more than 100 g) that has been isolated from the natural source. The methods for the recovery of protactinium include coprecipitation, solvent extraction, ion exchange, and volatility procedures. AH of these, however, are rendered difficult by the extreme tendency of protactinium(V) to form polymeric coUoidal particles composed of ionic species. These caimot be removed from aqueous media by solvent extraction losses may occur by adsorption to containers and protactinium may be adsorbed by any precipitate present. [Pg.213]

As the parent of actinium in this series it was named protoactinium, shortened in 1949 to protactinium. Because of its low natural abundance its chemistry was obscure until 1960 when A. G. Maddock and co-workers at the UK Atomic Energy Authority worked up about 130g from 60 tons of sludge which had accumulated during the extraction of uranium from UO2 ores. It is from this sample, distributed to numerous laboratories throughout the world, that the bulk of our knowledge of the element s chemistry was gleaned. [Pg.1251]

An additional material based on the extractant octyl-phenyl-N,N-diisobutyl-carbamoylmethylphosphine oxide, or CMPO, (marketed under the name TRU-Spec) has also been widely utilized for separations of transuranic actinides (Horwitz et al. 1993a) but is also useful for uranium-series separations (e.g., Burnett and Yeh 1995 Luo et al. 1997 Bourdon et al. 1999 Layne and Sims 2000). This material has even greater distribution coefficients for the uranium-series elements U (>1000), Th (>10000), and Pa. As shown in Figure 1, use of this material allows for sequential separations of Ra, Th, U, and Pa from a single aliquot on a single column. Separations of protactinium using this material (Bourdon et al. 1999) provide an alternative to liquid-liquid extractions documented in Pickett et al. (1994). [Pg.28]

Figure 1. Schematic diagram showing a TRU-spec extraction chromatography method for separation of uranium, thorium, protactinium, and radium from a single rock aliquot. Further purification for each element is normally necessary for mass spectrometric analysis. Analysis of a single aliquot reduces sample size requirements and facilitates evaluation of uranium-series dating concordance for volcanic rocks and carbonates. For TIMS work where ionization is negatively influenced by the presence of residual extractant, inert beads are used to help remove dissolved extractant from the eluant. Figure 1. Schematic diagram showing a TRU-spec extraction chromatography method for separation of uranium, thorium, protactinium, and radium from a single rock aliquot. Further purification for each element is normally necessary for mass spectrometric analysis. Analysis of a single aliquot reduces sample size requirements and facilitates evaluation of uranium-series dating concordance for volcanic rocks and carbonates. For TIMS work where ionization is negatively influenced by the presence of residual extractant, inert beads are used to help remove dissolved extractant from the eluant.
Burnett WC, Yeh CC (1995) Separation of protactinium from geochemical materials via extraction chromatography. Radioact Radiochem 6 22-32... [Pg.55]

Because the proportion of protactinium to its ores is of the magnitude of one part in ten milhon, it takes many truckloads of ore to extract a small quantity of the metal. About 30 years ago, approximately 125 grams of protactinium was extracted from over 60 tons of ore... [Pg.311]

As mentioned, protactinium is one of the rarest elements in existence. Although protactinium was isolated, studied, and identified in 1934, little is known about its chemical and physical properties since only a small amount of the metal was produced. Its major source is the fission by-product of uranium found in the ore pitchblende, and only about 350 milligrams can be extracted from each ton of high-grade uranium ore. Protactinium can also be produced by the submission of samples of throrium-230 (g Th) to radiation in nuclear reactors or particle accelerators, where one proton and one or more neutrons are added to each thorium atom, thus changing element 90 to element 91. [Pg.312]

Pa-233 is extracted into diisopropyl ketone. The solvent extract containing Pa-233 is washed with 6M HCl for the removal of trace manganese salts and impurities. From the diisopropyl ketone extract, protactinium-233 is reextracted into an HCl-HF mixture solution containing 6M HCl and 0. IM HF. [Pg.783]

Protactinium is separated by solvent extraction and anion exchange processes by using sulfate solutions. After chemical separation, the protactinium salts are ignited to a pentoxide, Pa205, which may be converted into an arsenazo(III) complex. The absorbance of the solution is measured at 630 nm with a spectrophotometer. Protactinium-231 is an alpha emitter and also forms photons at 300 KeV, which can be measured by various radioactive counters and spectrophotometric techniques. Protactinium also can be measured by neutron activation analysis. [Pg.784]

Pa, protactinium, was first identified in 1913 in the decay products of U-238 as the Pa-234 isotope (6.7 h) by Kasimir Fajans and Otto H. Gohring. In 1916, two groups, Otto Hahn and Lisa Meitner, and Frederick Soddy and John A. Cranston, found Pa-231 (10 years) as a decay product of U-235. This isotope is the parent of Ac-227 in the U-235 decay series, hence it was named protactinium (before actinium). Isolation from U extraction sludges yielded over 100 g in 1960. [Pg.400]

To remove radium and other radioactive constituents from pitchblende, Hahn and Meitner treated pulverized pitchblende repeatedly and for long periods of time with hot concentrated nitric acid. From the insoluble siliceous residue they separated a new radioactive substance, which they called protoactinium. This name has subsequently been shortened to protactinium. When they added a little tantalum salt to a solution containing protactinium, the reactions of the new substance so closely resembled those of tantalum that Hahn and Meitner were unable to separate the two substances (118). Since tantalum is not radioactive, the protactinium could thus be obtained free from other radioelements. Since protactinium is not an isotope of tantalum, it should be possible to separate them from each other (119). By working up large quantities of rich pitchblende residues from the Quinine Works at Braunschweig, Hahn and Meitner were able to extract more active preparations of the new element (49). [Pg.820]

Quantitative methods of obtaining protactinium start from the carbonate precipitate from the treatment of the acid extract of certain uranium ores. After this carbonate precipitate is dissolved, the protactinium remains 111 the silica gel residue, from the solution of which it is obtained on a manganese dioxide carrier. An alternate method effects final separation... [Pg.1370]

The methods of piuification include the use of ion exchange resins, the precipitation of protactinium peroxide and the extraction of aqueous solutions of protactinium salts by various organic solvents. [Pg.1370]

Protactinium can be separated from natural ore concentrates by cycles consisting of adsorption on Mn02 precipitates followed by solvent extraction of the cupferron complex with pentyl acetate.94... [Pg.510]

Only thorium, protactinium, and uranium occur in Nature in amounts sufficient for practical extraction. Thorium and uranium occur in enriched deposits, workable by normal mining procedures, and are available in ton quantities from deposits in Canada, USA, South Africa, Australia, and Namibia. [Pg.1130]

While protactinium is present at less than the parts per million level in uranium ores, this is still the major source because it can be extracted from the residues accumulated in large-scale production of uranium. There are extreme technical difficulties because of colloid formation but more than 100 g have been isolated. [Pg.1144]

First identified in 1913 (the first compound, Pa20s, was isolated in 1927 by von Grosse, who isolated the element in 1931), protactinium is not generally extracted. Most of what is known about the chemistry of protactinium ultimately results from the extraction in 1960 by the UK Atomic Energy Authority of some 125 grams of Pa, from 60 tons of waste material left over from the extraction of uranium, at a cost of about 500,000 (very roughly, 1,250,000 at today s exchange rate). [Pg.148]

Since protactinium(IV) is readily oxidized in the atmosphere halo-genoprotactinates(IV) must be prepared in oxygen-free solvents or by heating the component halides together in an inert atmosphere. It is reported that solvent extraction studies have established the existence of the fluoro and chloro species PaXl" " and PaX + in aqueous acid solution (81)... [Pg.21]

The chemistry of the early actinide metals has been most extensively studied for many reasons. Chief among these is the availability of materials for study. Thorium and uranium obtained from ores as described above have been available for chemical investigations for well over 100 years. In fact, all early actinide elements may be found in nature, although only thorium, protactinium, and uranium are present in sufficient quantities to justify extraction. The remaining early actinide elements, neptunium and plutonium, are produced in large quantities in nuclear reactors. [Pg.192]

Protactinium is one of the rarest elements on Earth. It is formed when uranium and other radioactive elements break down. For many years, the only supply of protactinium of any size was kept in Great Britain. The British government had spent 500,000 to extract about 4 ounces (125 grams) of the element from about 65 short tons (60 metric tons) of radioactive waste. Relatively little is known about the properties of the element, and it has no commercial uses. [Pg.473]

When more them one solute is involved in the consideration of the process design, the situation becomes much more complex since the extraction behaviours of the different solutes will usually be interdependent. In the case of irradiated thermal reactor fuels the solvent extraction process will be dealing with uranium containing up to ca. 4% of fission products and other actinides. These will have only a minor effect on uranium distribution so that a single-solute model may be adequate for process design. However, in some cases nitric acid extraction may compete with U02 extraction and a two-solute model may be needed. In the case of breeder reactor fuels the uranium may contain perhaps 20% of plutonium or thorium. Neptunium or protactinium levels in such fuels may also not be negligible and, under these circumstances, the single-solute... [Pg.934]

Ross, R. G. Grimes, W. R. Barton, C. J. Bamberger, C. E. Baes, C. F. Jr., "The Reductive Extraction of Protactinium and Uranium from Molten LiF-BeF2-ThF Mixture Into Bismuth," in "Symposium on Reprocessing of Nuclear Fuels, The Metallurgical Society of AIME, Ames, IA, August 1969, ... [Pg.183]


See other pages where Protactinium extraction is mentioned: [Pg.331]    [Pg.199]    [Pg.212]    [Pg.213]    [Pg.45]    [Pg.476]    [Pg.783]    [Pg.820]    [Pg.1370]    [Pg.455]    [Pg.934]    [Pg.125]    [Pg.179]    [Pg.148]    [Pg.247]    [Pg.212]    [Pg.47]    [Pg.1053]    [Pg.451]    [Pg.46]    [Pg.72]    [Pg.212]    [Pg.420]   
See also in sourсe #XX -- [ Pg.148 ]




SEARCH



Protactinium

© 2024 chempedia.info