Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propagation reactions cationic

The electron-releasing R group helps stabilize this cation. As with anionic polymerization, the separation of the ions and hence the ease of monomer insertion depends on the reaction medium. The propagation reaction may be written as... [Pg.412]

The centre of experimental and theoretical investigation on cationic polymerization is the propagation reaction, Eq. (1), and the influence on it. [Pg.193]

The formation of high molecular products during the cationic polymerization depends on whether the propagation reaction, consisting of the interaction of the cationic chain end as a reactive intermediate with the monomer, reproduces the reactive intermediate (see Eq. (1)). For this reason the monomer functions as the agent and as the substrate when in the form of the cation. This means, however, the interaction between the monomer and the cationic chain end is a function of the monomer structure itself when all other conditiones remain the same. [Pg.195]

The fact that the cationic polymerization could not be experimentally registered for R = —CN, —COOCHj, could be explained in theory with the high n-energy use for the start reaction in contrast to the energy use of R = —Ph—CH3. The vinyl acetate (R = OCOCH3) does not polymerize cationically. This can be explained by the fact that the propagation reaction is so disadvantageous that the formed ions cannot start the polymerization. [Pg.198]

The propagation reactions of the growing cationic chain end with the monomer ethene have already been discussed in part 4.3. The reaction enthalpies of the corresponding propagation steps show different tendencies for the gas phase and solution, when the cationic chain end is lengthened. However, as the monomer is increased in size and the cationic chain end remains the same, then the tendencies for the gas phase and solution correspond to each other. This is an indication that the solvent influence on the cationic propagation reaction is determined by the nature of the cations in question and their solvation. [Pg.229]

Transfer reaction to the monomer, leading to the insertion of an unsaturated end group, is an important reaction in cationic chain polymerisation. As the activation energies of both termination and transfer reactions are higher than that of the propagation step, cationic chain polymerisation can only lead to high molecular masses when undertaken at low temperatures, typically — 100°C. [Pg.43]

The reactivity of I in photoinitiated cationic polymerization is due to several factors associated with the structure of this monomer. Most importantly, the presence of the ester groups in I which can interact with oxiranium ions generated at either of the two epoxide groups both intra- and intermolecularly produces dioxacarbenium ions of reduced activity in the propagation reaction. Taking this into account, a series of diepoxides were prepared which did not possess ester groups. Some of these monomers show enhanced reactivity as measured by RTIR in photoinitiated cationic polymerization compared to I. [Pg.94]

Isobutene is one of the very small number of aliphatic hydrocarbons which form linear high polymers by cationic catalysis (see Section 5). The reason for this is that only in these few among the lower aliphatic olefins is there found the right balance of those factors which determine the path of a cationic polymerisation. For the formation of linear high polymers it is necessary that the propagation reaction should be much faster than all alternative reactions of the growing end of the chain and for any appreciable numbers of chains to be formed at all, the initiation must be fast. ... [Pg.47]

Since the condition for formation of high polymers is that the propagation reaction must be faster than all other reactions of the growing species, and since carbonium ions are highly reactive, it is evident that very special conditions are required for the formation of high polymers by cationic polymerization. The general conditions which must be satisfied are ... [Pg.139]

Olefins can only be polymerized by metal halides if a third substance, the co-catalyst, is present. The function of this is to provide the cation which starts the carbonium ion chain reaction. In most systems the catalyst is not used up, but at any rate part of the cocatalyst molecule is necessarily incorporated in the polymer. Whereas the initiation and propagation of cationic polymerizations are now fairly well understood, termination and transfer reactions are still obscure. A distinction is made between true kinetic termination reactions in which the propagating ion is destroyed, and transfer reactions in which only the molecular chain is broken off. It is shown that the kinetic termination may take place by several different types of reaction, and that in some systems there is no termination at all. Since the molecular weight is generally quite low, transfer must be dominant. According to the circumstances many different types of transfer are possible, including proton transfer, hydride ion transfer, and transfer reactions involving monomer, catalyst, or solvent. [Pg.254]

We thus conclude that ester propagation (pseudo-cationic polymerisation) is indeed a reaction type sui generis, and that under certain circumstances it may be accompanied by free-ion propagation. [Pg.427]

As mentioned in Section 2.2, the complexing of carbenium ions with monomers is a well-accepted feature of the theory of cationic polymerisations, but it has not been realised clearly until recently that this implies the coexistence of first-order and second-order propagation reactions in certain systems over certain concentration ranges, i.e., the existence of (at least) dieidic polymerisations. [Pg.516]

Solomon (3, h, 5.) reported that various clays inhibited or retarded free radical reactions such as thermal and peroxide-initiated polymerization of methyl methacrylate and styrene, peroxide-initiated styrene-unsaturated polyester copolymerization, as well as sulfur vulcanization of styrene-butadiene copolymer rubber. The proposed mechanism for inhibition involved deactivation of free radicals by a one-electron transfer to octahedral aluminum sites on the clay, resulting in a conversion of the free radical, i.e. catalyst radical or chain radical, to a cation which is inactive in these radical initiated and/or propagated reactions. [Pg.471]

What reactant besides the monomer is present in cationic chain propagation reactions ... [Pg.169]

This reaction may account in part for the oligomers obtained in the polymerization of pro-pene, 1-butene, and other 1-alkenes where the propagation reaction is not highly favorable (due to the low stability of the propagating carbocation). Unreactive 1-alkenes and 2-alkenes have been used to control polymer molecular weight in cationic polymerization of reactive monomers, presumably by hydride transfer to the unreactive monomer. The importance of hydride ion transfer from monomer is not established for the more reactive monomers. For example, hydride transfer by monomer is less likely a mode of chain termination compared to proton transfer to monomer for isobutylene polymerization since the tertiary carbocation formed by proton transfer is more stable than the allyl carbocation formed by hydride transfer. Similar considerations apply to the polymerizations of other reactive monomers. Hydride transfer is not a possibility for those monomers without easily transferable hydrogens, such as A-vinylcarbazole, styrene, vinyl ethers, and coumarone. [Pg.385]

Steric effects similar to those in radical copolymerization are also operative in cationic copolymerizations. Table 6-9 shows the effect of methyl substituents in the a- and 11-positions of styrene. Reactivity is increased by the a-methyl substituent because of its electron-donating power. The decreased reactivity of P-methylstyrene relative to styrene indicates that the steric effect of the P-substituent outweighs its polar effect of increasing the electron density on the double bond. Furthermore, the tranx-fl-methylstyrene appears to be more reactive than the cis isomer, although the difference is much less than in radical copolymerization (Sec. 6-3b-2). It is worth noting that 1,2-disubstituted alkenes have finite r values in cationic copolymerization compared to the values of zero in radical copolymerization (Table 6-2). There is a tendency for 1,2-disubstituted alkenes to self-propagate in cationic copolymerization, although this tendency is low in the radical reaction. [Pg.508]

Thus the growing anionic chain can assume at least two identities the free anion and the anion-cation ion pair (several types of solvated ion-pairs can also be considered). Furthermore, the kinetics of these propagation reactions, which generally show a fractional dependency on chain-end concentration ranging from one-half to unity, can best be explained by assuming that the monomer can react with both the free anion and the ion-pair (4, 5, 60, but at different rates. Thus, for example, in the polymerization of styrene by organosodium, the rate of polymerization (Rp) can be expressed as... [Pg.18]

The initiation mechanism for cationic polymerization of cyclic ethers, vinyl amines, and alkoxy styrenes has been investigated by A. Ledwith. He used stable cations, like tropylium or triphenylmethyl cations with stable anions, like SbCl6, and distinguished between three initiation reactions cation additions, hydride abstraction, and electron transfer. One of the typical examples of cationic polymerization, in which the propagating species is the oxonium ion, is the polymerization of tetra-hydrofuran. P. and M. P. Dreyfuss studied this polymerization with the triethyloxonium salts of various counterions and established an order of... [Pg.11]

The structure of the cationic chain ends is not clear in the polymerization of cyclic formals. Two different kinds of active centers and hence two types of propagation reactions have been proposed (9) ... [Pg.390]


See other pages where Propagation reactions cationic is mentioned: [Pg.321]    [Pg.3]    [Pg.4]    [Pg.10]    [Pg.11]    [Pg.190]    [Pg.223]    [Pg.229]    [Pg.231]    [Pg.227]    [Pg.31]    [Pg.517]    [Pg.530]    [Pg.531]    [Pg.591]    [Pg.610]    [Pg.413]    [Pg.418]    [Pg.382]    [Pg.467]    [Pg.190]    [Pg.49]    [Pg.184]    [Pg.11]    [Pg.25]    [Pg.12]    [Pg.146]    [Pg.330]    [Pg.105]    [Pg.443]    [Pg.45]    [Pg.368]   
See also in sourсe #XX -- [ Pg.326 ]

See also in sourсe #XX -- [ Pg.326 ]




SEARCH



Cationic propagation

Cationic reactions

Propagation reactions

© 2024 chempedia.info