Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Prolines aldol reactions

Proline Aldol reaction of a-benzyloxy acetaldehyde Strong (+)NLE 63... [Pg.215]

Scheme 4.4 L-Proline aldol reaction between a-halogenated ketones and aldehydes... Scheme 4.4 L-Proline aldol reaction between a-halogenated ketones and aldehydes...
Since most often the selective formation of just one stereoisomer is desired, it is of great importance to develop highly selective methods. For example the second step, the aldol reaction, can be carried out in the presence of a chiral auxiliary—e.g. a chiral base—to yield a product with high enantiomeric excess. This has been demonstrated for example for the reaction of 2-methylcyclopenta-1,3-dione with methyl vinyl ketone in the presence of a chiral amine or a-amino acid. By using either enantiomer of the amino acid proline—i.e. (S)-(-)-proline or (/ )-(+)-proline—as chiral auxiliary, either enantiomer of the annulation product 7a-methyl-5,6,7,7a-tetrahydroindan-l,5-dione could be obtained with high enantiomeric excess. a-Substituted ketones, e.g. 2-methylcyclohexanone 9, usually add with the higher substituted a-carbon to the Michael acceptor ... [Pg.242]

The investigation of the driving forces and robnstness of proline-catalyzed aldol reaction is performed by ntilizing the methodology of reaction progress kinetic analysis. [Pg.445]

A full kinetic study of the proline-mediated aldol reaction based on a detailed catalytic reaction mechanism will be published separately. [Pg.448]

The values of x = 0.5 and = 1 for the kinetic orders in acetone [1] and aldehyde [2] are not trae kinetic orders for this reaction. Rather, these values represent the power-law compromise for a catalytic reaction with a more complex catalytic rate law that corresponds to the proposed steady-state catalytic cycle shown in Scheme 50.3. In the generally accepted mechanism for the intermolecular direct aldol reaction, proline reacts with the ketone substrate to form an enamine, which then attacks the aldehyde substrate." A reaction exhibiting saturation kinetics in [1] and rate-limiting addition of [2] can show apparent power law kinetics with both x and y exhibiting orders between zero and one. [Pg.451]

Reaction progress kinetic analysis offers a reliable alternative method to assess the stability of the active catalyst concentration, again based on our concept of excess [e]. In contrast to our different excess experiments described above, now we carry out a set of experiments at the same value of excess [ej. We consider again the proline-mediated aldol reaction shown in Scheme 50.1. Under reaction conditions, the proline catalyst can undergo side reactions with aldehydes to form inactive cyclic species called oxazolidinones, effectively decreasing the active catalyst concentration. It has recently been shown that addition of small amounts of water to the reaction mixture can eliminate this catalyst deactivation. Reaction progress kinetic analysis of experiments carried out at the same excess [e] can be used to confirm the deactivation of proline in the absence of added water as well to demonstrate that the proline concentration remains constant when water is present. [Pg.452]

A DFT study found a corresponding TS to be the lowest energy.167 This study also points to the importance of the solvent, DMSO, in stabilizing the charge buildup that occurs. A further computational study analyzed the stereoselectivity of the proline-catalyzed aldol addition reactions of cyclohexanone with acetaldehyde, isobu-tyraldehyde, and benzaldehyde on the basis of a similar TS.168 Another study, which explored the role of proline in intramolecular aldol reactions, is discussed in the next section.169... [Pg.132]

Visual models, additional information and exercises on Proline-Catalyzed Aldol Reactions can be found in the Digital Resource available at Springer.com/carey-sundberg. [Pg.133]

The detailed mechanism of this enantioselective transformation remains under investigation.178 It is known that the acidic carboxylic group is crucial, and the cyclization is believed to occur via the enamine derived from the catalyst and the exocyclic ketone. A computational study suggested that the proton transfer occurs through a TS very similar to that described for the proline-catalyzed aldol reaction (see page 132).179... [Pg.139]

The TS proposed for these proline-catalyzed reactions is very similar to that for the proline-catalyzed aldol addition (see p. 132). In the case of imines, however, the aldehyde substituent is directed toward the enamine double bond because of the dominant steric effect of the (V-aryl substituent. This leads to formation of syn isomers, whereas the aldol reaction leads to anti isomers. This is the TS found to be the most stable by B3LYP/6-31G computations.199 The proton transfer is essentially complete at the TS. As with the aldol addition TS, the enamine is oriented anti to the proline carboxy group in the most stable TS. [Pg.144]

Lewis-Acid Catalyzed. Recently, various Lewis acids have been examined as catalyst for the aldol reaction. In the presence of complexes of zinc with aminoesters or aminoalcohols, the dehydration can be avoided and the aldol addition becomes essentially quantitative (Eq. 8.97).245 A microporous coordination polymer obtained by treating anthracene- is (resorcinol) with La(0/Pr)3 possesses catalytic activity for ketone enolization and aldol reactions in pure water at neutral pH.246 The La network is stable against hydrolysis and maintains microporosity and reversible substrate binding that mimicked an enzyme. Zn complexes of proline, lysine, and arginine were found to be efficient catalysts for the aldol addition of p-nitrobenzaldehyde and acetone in an aqueous medium to give quantitative yields and the enantiomeric excesses were up to 56% with 5 mol% of the catalysts at room temperature.247... [Pg.268]

Organic-Base Catalyzed. Asymmetric direct aldol reactions have received considerable attention recently (Eq. 8.98).251 Direct asymmetric catalytic aldol reactions have been successfully performed using aldehydes and unmodified ketones together with chiral cyclic secondary amines as catalysts.252 L-proline and 5,5-dimethylthiazolidinium-4-carboxylate (DMTC) were found to be the most powerful amino acid catalysts for the reaction of both acyclic and cyclic ketones as aldol donors with aromatic and aliphatic aldehydes to afford the corresponding... [Pg.268]

As shown in Scheme 53, L-proline-catalyzed asymmetric aldol reaction between 3-methylbutanal and acetone was used by List for the synthesis of (S)-34 [79]. [Pg.39]

The synthesis of optically active nitrones (95) was carried out by an aldol reaction of aldehydes (93), catalyzed by L- proline, with carbonyl activated compounds (94) and by an in situ reaction with N -alkylhydroxylamines (Scheme 2.36, Table 2.5) (261). [Pg.163]

Aldol-type reactions of nitrones (303) occur with electron-deficient ketones, such as a-keto esters, a, 3-diketones, and trifluoromethyl ketones. These reactions are catalyzed by secondary amines. The use of chiral cyclic amines A1-A7 leads to a-(2-hydroxyalkyl)nitrones (304) in moderate yields and rather high optical purity (Scheme 2.120) (381). The mechanism of the nitrone-aldol reaction of iV-methyl-C-ethyl nitrone with dimethyl ketomalonate in the absence and presence of L- proline has been studied by using density functional theory (DFT) (544). [Pg.228]

As with the above pyrrolidine, proline-type chiral auxiliaries also show different behaviors toward zirconium or lithium enolate mediated aldol reactions. Evans found that lithium enolates derived from prolinol amides exhibit excellent diastereofacial selectivities in alkylation reactions (see Section 2.2.32), while the lithium enolates of proline amides are unsuccessful in aldol condensations. Effective chiral reagents were zirconium enolates, which can be obtained from the corresponding lithium enolates via metal exchange with Cp2ZrCl2. For example, excellent levels of asymmetric induction in the aldol process with synj anti selectivity of 96-98% and diastereofacial selectivity of 50-200 116a can be achieved in the Zr-enolate-mediated aldol reaction (see Scheme 3-10). [Pg.144]

Synthesis of the common intermediate C (4), and its further conversion to 2 and 3 is illustrated in Scheme 7-3. Two racemic compounds, ( )-7 and ( + )-10, are prepared from readily available starting materials 5 and 8, respectively (Scheme 7-2). Coupling of 7 and 10 gives a mixture of diastereomers 11. An intramolecular aldol reaction of 11 catalyzed by D-proline yields diastereomers 12 and 13 in equal molar ratios (about 36% ee for each diastereomer). Compound 12, the desired ketone, is converted to 14, which is further purified by crystallization to give the compound in the desired stereochemistry in sterically pure form. Reduction of the ketone carbonyl group and subsequent methoxy... [Pg.398]

The proline-mediated intramolecular aldol condensation of dialdehyde substrates was also reported by List in 2003, affording enantioselective synthesis of cyclic p-hydroxy aldehydes via a 6-e ofexo-aldolization reaction (Scheme 11.7d). [Pg.327]

The development of enamine catalysis parallels that of iminium catalysis (Scheme 3) [24], Like iminium catalysis, the concept took a long time to mature, and also required a key discovery - the discovery of intermolecular proline-catalyzed aldol reactions by List and coworkers in 2000 [23] - to set the field in motion. The timeline of historical developments of enamine catalysis is outlined in Scheme 4. [Pg.31]

Discovery of the proline-catalyzed intramolecular aldol reaction - the Hajos-Parrish-... [Pg.33]

List, Barbas and Lerner discover the intermolecular proline-catalyzed aldol reaction... [Pg.33]

Gryko and coworkers studied the influence of an acid additive in the aldol reaction catalyzed by a proline derivative equipped with an existing hydrogen bonding... [Pg.38]

The delicateness of the aldol protocol has perhaps been one of the factors why enamine catalysis of the aldol reaction did not emerge nntil the 1970s. The Hajos-Parrish-Eder-Sauer-Wiechert reaction [30] (Scheme 16) was an important early example of an intramolecular enamine-catalyzed aldol reaction. However, it was not nntil 2000 when List, Barbas and Lemer demonstrated that the same reaction can also be performed in an intermolecular fashion, using proline as a simple enamine catalyst [26]. [Pg.43]

Typical starting materials, catalysts, and products of the enamine-catalyzed aldol reaction are summarized in Scheme 17. In proline-catalyzed aldol reactions, enantioselectivities are good to excellent with selected cyclic ketones, such as cyclohexanone and 4-thianone, but generally lower with acetone. Hindered aldehyde acceptors, such as isobutyraldehyde and pivalaldehyde, afford high enantioselectivities even with acetone. In general, the reactions are anti selective, but there are aheady a number of examples of syn selective enamine aldol processes [200, 201] (Schemes 17 and 18, see below). However, syn selective aldol reactions are still rare, especially with cychc ketones. [Pg.44]


See other pages where Prolines aldol reactions is mentioned: [Pg.92]    [Pg.92]    [Pg.311]    [Pg.1037]    [Pg.1223]    [Pg.447]    [Pg.447]    [Pg.450]    [Pg.451]    [Pg.269]    [Pg.77]    [Pg.133]    [Pg.174]    [Pg.255]    [Pg.315]    [Pg.327]    [Pg.327]    [Pg.5]    [Pg.32]    [Pg.39]    [Pg.40]    [Pg.44]   
See also in sourсe #XX -- [ Pg.292 , Pg.325 ]

See also in sourсe #XX -- [ Pg.292 , Pg.325 ]




SEARCH



Aldol reaction Proline-catalysed

Aldol reaction proline mediated

Aldol reactions proline-catalyzed asymmetric

Asymmetric aldol reactions proline catalysed

Mechanism of Proline-Catalyzed Intramolecular Aldol Reactions

Proline catalysis aldol reactions

Proline catalysis asymmetric aldol reactions

Proline catalysts asymmetric aldol reactions

Proline-based catalysts aldol reactions

Proline-catalyzed aldol reactions

Prolines cross-aldol reaction

Prolines water aldol reaction

Stereoselective Aldol Reactions Using Proline Organocatalysts

© 2024 chempedia.info