Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Processing microwave treatment

The dielectric permittivity as a function of frequency may show resonance behavior in the case of gas molecules as studied in microwave spectroscopy (25) or more likely relaxation phenomena in soUds associated with the dissipative processes of polarization of molecules, be they nonpolar, dipolar, etc. There are exceptional circumstances of ferromagnetic resonance, electron magnetic resonance, or nmr. In most microwave treatments, the power dissipation or absorption process is described phenomenologically by equation 5, whatever the detailed molecular processes. [Pg.338]

Malafaya, R. B., Elvira, C., Gallardo, A., San Roman, J., Reis, R. L. (2001). Rorous starch-based drug delivery systems processed by a microwave treatment. J. Biomater. Sci. Polym. Ed., 72(11), 1227-1241. [Pg.460]

Additionally, the microwave treatment during the crystallization process at high temperature may cause the metastable mesophase to collapse into the denser or amorphous phase in synthetic mixture as well as provide the favorable condition for the formation of silicalite-1. A summary of parameters obtained by nitrogen sorption is shown in Table 2. In Table 2, pore diameters of major peaks ( ) for sample II-IV are increased from 2.5 to 2.87 nm as extending the microwave irradiation. It implied that the additional space created in the mesoporous channels, as a consequence of the pore size enlargement, that is filled by extra water [16]. [Pg.112]

Microwave treatment is widely used to prepare various refractory inorganic compounds and materials (double oxides, nitrides, carbides, semiconductors, glasses, ceramics, etc.) [705], as well as in organic processes [706,707] pyrolysis, esterification, and condensation reactions. Microwave syntheses of coordination and organometallic compounds, discussed in this chapter, are presented in a relatively small number of papers in the available literature. As is seen, the use of microwaves in coordination chemistry began not long ago and, due to the highly limited number of results, these works can be considered as a careful pioneer experimentation, in order to establish the suitability of this technique for synthetic coordination chemistry. [Pg.280]

Table II gives the results of residual trypsin inhibitor levels for the various soymilk preparations. The 90 and 120 sec microwave treatments were the most effective in inactivating the trypsin inhibitor complex while hot water treated and unheated samples showed the highest levels. It is not surprising to find that microwave processing is more efficient than hot water in suppressing trypsin inhibitor considering the rapid penetration of food material by microwaves and the susceptibility of protein action to small heat induced changes in tertiary structure. Hence, Collins and McCarty (12) found microwaves produced a more rapid destruction of endogenous potato enzymes (polyphenol oxidase and peroxidase) than hot water heating. Table II gives the results of residual trypsin inhibitor levels for the various soymilk preparations. The 90 and 120 sec microwave treatments were the most effective in inactivating the trypsin inhibitor complex while hot water treated and unheated samples showed the highest levels. It is not surprising to find that microwave processing is more efficient than hot water in suppressing trypsin inhibitor considering the rapid penetration of food material by microwaves and the susceptibility of protein action to small heat induced changes in tertiary structure. Hence, Collins and McCarty (12) found microwaves produced a more rapid destruction of endogenous potato enzymes (polyphenol oxidase and peroxidase) than hot water heating.
Although the soybeans used in this study were soaked prior to microwave treatment, this may not he necessary. It has been observed (Pour-El, personal communication) that irradiation of soybeans containing only innate moisture (6-7 ) for a period comparable to those used in this work reduced trypsin inhibitor levels by 90%. Allowing the microenvironmental water of the protein to be the energy transmitter reduced the time needed for inactivation. It was postulated that adding moisture actually reduced the process efficiency because of the energy required to heat the additional water. [Pg.155]

Before applications are dealt with, the main variables governing microwave-assisted processes and the parameters characterizing specific microwave treatments are examined. The applications discussed include not only microwave-assisted digestion and extraction — which are the two most widely implemented and hence those with the highest potential interest to readers — but also others of special significance to solid sample treatment such as microwave-assisted drying, distillation and protein hydrolysis. Finally, some safety recommendations on the use of microwave equipment are made. [Pg.179]

As noted earlier, not all open-vessel systems (viz. those that operate at atmospheric pressure) are of the focused type. A number of reported applications use a domestic multi-mode oven to process samples for analytical purposes, usually with a view to coupling the microwave treatment to some other step of the analytical process (generally the determination step). Below are described the most common on-line systems used so far, including domestic ovens (multi-mode systems) and open-vessel focused systems, which operate at atmospheric pressure and are thus much more flexible for coupling to subsequent steps of the analytical process. On the other hand, the increased flexibility of open-vessel systems has promoted the design of new microwave-assisted sample treatment units based on focused or multi-mode (domestic) ovens adapted to the particular purpose. Examples of these new units include the microwave-ultrasound combined extractor, the focused microwave-assisted Soxhlet extractor, the microwave-assisted drying system and the microwave-assisted distillation extractor, which are also dealt with in this section. Finally, the usefulness of the microwave-assisted sample treatment modules incorporated in robot stations is also commented on, albeit briefly as such devices are discussed in greater detail in Chapter 10. [Pg.194]

Most on-line procedures involving microwaves that are conducted with a view to coupling a microwave treatment (usually digestion) with a detector (usually of the atomic type) for the determination of analytes use either a domestic oven [37-40] or a commercial focused system [41-43] plus appropriate connections. Usually, the coupling is done by inserting a Teflon coil in the oven in order to circulate the suspended solid sample to be subjected to the microwaves [44]. Some systems use domestic or commercial focused systems where the solid sample is directly placed in the sample vessel [45] and an aspiration system is used after the microwave treatment to transfer the extract to the determinative instrument used [37,46] or to an apparatus employed in some other step of the analytical process [40,43]. [Pg.194]

TSE at 165°C optionally with on-line microwave treatment to effect transreaction, or TSE at 165-200°C / morphology development along screw axis vs. processing conditions in three different extruders / rheology / TGA-GC / selective solvent extraction / SEM / mechanical properties / use to fix morphology of EVAc + E-MAc dispersed phase in PP matrix / dibutyltin oxide catalyst (0-4)... [Pg.391]


See other pages where Processing microwave treatment is mentioned: [Pg.945]    [Pg.81]    [Pg.287]    [Pg.183]    [Pg.217]    [Pg.173]    [Pg.153]    [Pg.169]    [Pg.169]    [Pg.2947]    [Pg.16]    [Pg.187]    [Pg.196]    [Pg.196]    [Pg.557]    [Pg.513]    [Pg.514]    [Pg.404]    [Pg.548]    [Pg.98]    [Pg.74]    [Pg.709]    [Pg.666]    [Pg.26]    [Pg.672]    [Pg.11]    [Pg.1021]    [Pg.621]    [Pg.100]    [Pg.690]    [Pg.1014]    [Pg.47]    [Pg.9]    [Pg.390]    [Pg.459]    [Pg.476]    [Pg.168]    [Pg.332]    [Pg.28]   
See also in sourсe #XX -- [ Pg.96 ]

See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Microwave processing

Microwave treatment

Processes treatment

© 2024 chempedia.info