Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process reaction rate

A lab-scale RPB has also been used to investigate reactions that are mass transfer constrained in conventional reactors. Testing a reaction that involves release of a volatile organic as part of molecular weight buildup revealed overall process reaction rates equivalent to conventional reactors in time frames more than two orders of magnitude lower. Here the high surface area and surface renewal capability of the RPB helped to overcome the transfer limitations across the liquid boundary. Similar results were seen on other reaction processes that were constrained by a liquid-surface interaction (62). [Pg.70]

The influence of diffusional limitations in gas phase reactions has been extensively treated by Wheeler and from a chemical engineering viewpoint by Hougen and Watson More recently a monograph by Satterfield and Sherwood has appeared. The problem of diffusion can be separated into two parts, the first is diffusion or mass transfer to the external surface of the catalyst and second, for those catalysts which are porous, diffusion within the catalyst pores. When diffusion is the rate limiting process, reaction rate, selectivity and activation energy are affected. [Pg.222]

In diffusion controlled processes, reaction rate increases with increasing permeability so that, in principle, the extent of degradation decreases as the degree of crystallization and molecule orientation increase. [Pg.76]

The Langmuir-Hinshelwood picture is essentially that of Fig. XVIII-14. If the process is unimolecular, the species meanders around on the surface until it receives the activation energy to go over to product(s), which then desorb. If the process is bimolecular, two species diffuse around until a reactive encounter occurs. The reaction will be diffusion controlled if it occurs on every encounter (see Ref. 211) the theory of surface diffusional encounters has been treated (see Ref. 212) the subject may also be approached by means of Monte Carlo/molecular dynamics techniques [213]. In the case of activated bimolecular reactions, however, there will in general be many encounters before the reactive one, and the rate law for the surface reaction is generally written by analogy to the mass action law for solutions. That is, for a bimolecular process, the rate is taken to be proportional to the product of the two surface concentrations. It is interesting, however, that essentially the same rate law is obtained if the adsorption is strictly localized and species react only if they happen to adsorb on adjacent sites (note Ref. 214). (The apparent rate law, that is, the rate law in terms of gas pressures, depends on the form of the adsorption isotherm, as discussed in the next section.)... [Pg.722]

To conclude this section it should be pointed out again that the friction coefficient has been considered to be frequency independent as implied in assuming a Markov process, and that zero-frequency friction as represented by solvent viscosity is an adequate parameter to describe the effect of friction on observed reaction rates. [Pg.851]

A catalyst is a material that accelerates a reaction rate towards thennodynamic equilibrium conversion without itself being consumed in the reaction. Reactions occur on catalysts at particular sites, called active sites , which may have different electronic and geometric structures than neighbouring sites. Catalytic reactions are at the heart of many chemical industries, and account for a large fraction of worldwide chemical production. Research into fiindamental aspects of catalytic reactions has a strong economic motivating factor a better understanding of the catalytic process... [Pg.937]

Dir, whereas for small distances d < r), /r Did. The large effective obtainable enables fast heterogeneous reaction rates to be measured under steady-state conditions. Zhou and Bard measured a rate constant of 6 x 10 Ms for the electro-hydrodimerization of acrylonitrile (AN) and observed the short-lived intennediate AN for this process [65]. [Pg.1942]

Under diffusion-controlled dissolution conditions (in the anodic direction) the crystal orientation has no influence on the reaction rate as only the mass transport conditions in the solution detennine the process. In other words, the material is removed unifonnly and electropolishing of the surface takes place. [Pg.2722]

In practical applications, gas-surface etching reactions are carried out in plasma reactors over the approximate pressure range 10 -1 Torr, and deposition reactions are carried out by molecular beam epitaxy (MBE) in ultrahigh vacuum (UHV below 10 Torr) or by chemical vapour deposition (CVD) in the approximate range 10 -10 Torr. These applied processes can be quite complex, and key individual reaction rate constants are needed as input for modelling and simulation studies—and ultimately for optimization—of the overall processes. [Pg.2926]

Fast transient studies are largely focused on elementary kinetic processes in atoms and molecules, i.e., on unimolecular and bimolecular reactions with first and second order kinetics, respectively (although confonnational heterogeneity in macromolecules may lead to the observation of more complicated unimolecular kinetics). Examples of fast thennally activated unimolecular processes include dissociation reactions in molecules as simple as diatomics, and isomerization and tautomerization reactions in polyatomic molecules. A very rough estimate of the minimum time scale required for an elementary unimolecular reaction may be obtained from the Arrhenius expression for the reaction rate constant, k = A. The quantity /cg T//i from transition state theory provides... [Pg.2947]

The local dynamics of tire systems considered tluis far has been eitlier steady or oscillatory. However, we may consider reaction-diffusion media where tire local reaction rates give rise to chaotic temporal behaviour of tire sort discussed earlier. Diffusional coupling of such local chaotic elements can lead to new types of spatio-temporal periodic and chaotic states. It is possible to find phase-synchronized states in such systems where tire amplitude varies chaotically from site to site in tire medium whilst a suitably defined phase is synclironized tliroughout tire medium 51. Such phase synclironization may play a role in layered neural networks and perceptive processes in mammals. Somewhat suriDrisingly, even when tire local dynamics is chaotic, tire system may support spiral waves... [Pg.3067]

Clearly the steric crowding that influences reaction rates in 8 2 processes plays no role in Stvfl reactions The order of alkyl halide reactivity in 8 1 reactions is the same as the order of carbocation stability the more stable the carbocation the more reactive the alkyl halide... [Pg.342]

Fischer-Tropsch Process. The Hterature on the hydrogenation of carbon monoxide dates back to 1902 when the synthesis of methane from synthesis gas over a nickel catalyst was reported (17). In 1923, F. Fischer and H. Tropsch reported the formation of a mixture of organic compounds they called synthol by reaction of synthesis gas over alkalized iron turnings at 10—15 MPa (99—150 atm) and 400—450°C (18). This mixture contained mostly oxygenated compounds, but also contained a small amount of alkanes and alkenes. Further study of the reaction at 0.7 MPa (6.9 atm) revealed that low pressure favored olefinic and paraffinic hydrocarbons and minimized oxygenates, but at this pressure the reaction rate was very low. Because of their pioneering work on catalytic hydrocarbon synthesis, this class of reactions became known as the Fischer-Tropsch (FT) synthesis. [Pg.164]

The nonbonding electron clouds of the attached fluorine atoms tend to repel the oncoming fluorine molecules as they approach the carbon skeleton. This reduces the number of effective coUisions, making it possible to increase the total number of coUisions and stiU not accelerate the reaction rate as the reaction proceeds toward completion. This protective sheath of fluorine atoms provides the inertness of Teflon and other fluorocarbons. It also explains the fact that greater success in direct fluorination processes has been reported when the hydrocarbon to be fluorinated had already been partiaUy fluorinated by some other process or was prechlorinated, ie, the protective sheath of halogens reduced the number of reactive coUisions and aUowed reactions to occur without excessive cleavage of carbon—carbon bonds or mnaway exothermic processes. [Pg.275]

Thus, for a successful fluorination process involving elemental fluorine, the number of coUisions must be drasticaUy reduced in the initial stages the rate of fluorination must be slow enough to aUow relaxation processes to occur and a heat sink must be provided to remove the reaction heat. Most direct fluorination reactions with organic compounds are performed at or near room temperature unless reaction rates are so fast that excessive fragmentation, charring, or decomposition occurs and a much lower temperature is desirable. [Pg.276]


See other pages where Process reaction rate is mentioned: [Pg.71]    [Pg.29]    [Pg.19]    [Pg.1]    [Pg.893]    [Pg.312]    [Pg.70]    [Pg.71]    [Pg.29]    [Pg.19]    [Pg.1]    [Pg.893]    [Pg.312]    [Pg.70]    [Pg.47]    [Pg.664]    [Pg.833]    [Pg.848]    [Pg.1094]    [Pg.1351]    [Pg.1591]    [Pg.1917]    [Pg.2115]    [Pg.489]    [Pg.360]    [Pg.216]    [Pg.754]    [Pg.279]    [Pg.396]    [Pg.262]    [Pg.425]    [Pg.426]    [Pg.276]    [Pg.16]    [Pg.22]    [Pg.74]    [Pg.301]    [Pg.339]    [Pg.15]    [Pg.342]    [Pg.499]   
See also in sourсe #XX -- [ Pg.70 ]




SEARCH



Biological processes, reaction rates

Dissociative process reaction rates

Haber process reaction rate

Process atmosphere reactions cooling rates, effect

Processing rate

Processing, mineral reaction rates

Rate processes

Reaction rates electron transfer processes

Reaction rates, biological processe

Reactions rate-limited by a diffusion process

Reactions rate-limited by an interface process

© 2024 chempedia.info