Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Problem 12-20 Complex formation

The HSAB principle is qualitatively useful, but lacks a satisfactory quantitative basis. Pearson has pointed out that the hard-hard or soft-soft matching of acid and base represents a stabilization that is additional to other factors that contribute to the strength of the bonds between donor and acceptor. These factors include the sizes of the cation and donor atom, their charges, their electronegativities and the orbital overlap between them. There is another problem. Complex formation usually involves ligand substitution. In... [Pg.187]

This reaction may be followed by others (complex formation and/or precipitation) which are independent of the electrode potential but determined by the nature and concentration of the electrolyte. It is impossible to discuss all the problems relating to zinc electrodes without looking at the electrolyte system and the kind of cell operation (primary or rechargeable). The only way to cover all the possible combinations is by another mode of characterization or categorization, which is used in the subsequent sections ... [Pg.199]

Problems of complex formation with macrocyclic ligands. S. L. Davydova and N. A. Plate, Coord, Chem. Rev., 1975,16, 195-225 (130). [Pg.43]

Hence, the problem is reduced to whether g(co) has its maximum on the wings or not. Any model able to demonstrate that such a maximum exists for some reason can explain the Poley absorption as well. An example was given recently [77] in the frame of a modified impact theory, which considers instantaneous collisions as a non-Poissonian random process [76]. Under definite conditions discussed at the end of Chapter 1 the negative loop in Kj(t) behaviour at long times is obtained, which is reflected by a maximum in its spectrum. Insofar as this maximum appears in g(co), it is exhibited in IR and FIR spectra as well. Other reasons for their appearance are not excluded. Complex formation, changing hindered rotation of diatomic species to libration, is one of the most reasonable. [Pg.83]

The second problem involves the measurement of pKa values for carbonyl and thiocarbonyl derivatives. Grieg and Johnson (157) have pointed out that the measurement of pKa values for very weak bases (11) is an inaccurate and arbitrary process. Of particular difficulty for our purposes is the fact that different carbonyl derivatives may require different acidity functions. As a result of this situation, no attempt was made to make correlations of pKa data for carbonyl and thiocarbonyl derivatives with eq. (2). Because accurate pKa values can be measured for imines, these values were correlated with eq. (2), although the conformational problem remains. The imine sets were first studied by Charton and Charton (73), who correlated them with eq. (2). No correlations of data for carbonyl or thiocarbonyl derivatives with eq. (2) are extant in the literature. Bhaskar, Gosavi, and Rao (158) have reported that AG values for complex formation of substituted thioureas with iodine are a linear function of the Taft a values. Drago, Wenz, and Carlson (159) have reported similar results for complex formation between iodine and substituted amides. Oloffson (160) has reported a linear relationship between -AH for the complex of substituted N,N-dimethylamides with SbCls and the ffj constants. [Pg.138]

Charge transfer reactions at ITIES include both ET reactions and ion transfer (IT) reactions. One question that may be addressed by nonlinear optics is the problem of the surface excess concentration during the IT reaction. Preliminary experiments have been reported for the IT reaction of sodium assisted by the crown ether ligand 4-nitro-benzo-15-crown-5 [104]. In the absence of sodium, the adsorption from the organic phase and the reorientation of the neutral crown ether at the interface has been observed. In the presence of the sodium ion, the problem is complicated by the complex formation between the crown ether and sodium. The SH response observed as a function of the applied potential clearly exhibited features related to the different steps in the mechanisms of the assisted ion transfer reaction although a clear relationship is difficult to establish as the ion transfer itself may be convoluted with monolayer rearrangements like reorientation. [Pg.153]

The high in vivo stability of DOTA complexes makes it a desirable ligand framework for BFCAs relative to acyclic analogs however, complex formation with DOTA and its analogs can be slow. The slow kinetics of complex formation with DOTA-type ligands does not pose problems with nuclides such as 177Lu (t /2 6.64 d) however, improved reaction conditions may... [Pg.898]

The main classes of plasticizers for polymeric ISEs are defined by now and comprise lipophilic esters and ethers [90], The regular plasticizer content in polymeric membranes is up to 66% and its influence on the membrane properties cannot be neglected. Compatibility with the membrane polymer is an obvious prerequisite, but other plasticizer parameters must be taken into account, with polarity and lipophilicity as the most important ones. The nature of the plasticizer influences sensor selectivity and detection limits, but often the reasons are not straightforward. The specific solvation of ions by the plasticizer may influence the apparent ion-ionophore complex formation constants, as these may vary in different matrices. Ion-pair formation constants also depend on the solvent polarity, but in polymeric membranes such correlations are rather qualitative. Insufficient plasticizer lipophilicity may cause its leaching, which is especially undesired for in-vivo measurements, for microelectrodes and sensors working under flow conditions. Extension of plasticizer alkyl chains in order to enhance lipophilicity is only a partial problem solution, as it may lead to membrane component incompatibility. The concept of plasticizer-free membranes with active compounds, covalently attached to the polymer, has been intensively studied in recent years [91]. [Pg.124]

Anthocyanins can form complexes with metal ions such as tin, iron and aluminium. The formation of a complex, as expected, alters the colour, usually from red to blue. Complex formation can be minimised by adding a chelating agent such as citrate ions. Another problem with anthocyanins is the formation of complexes with proteins. This can lead to precipitation in extreme cases. This problem is normally minimised by careful selection of the anthocyanin. [Pg.98]

This system fulfills the four above-mentioned conditions, as the active species is a rhodium hydride which acts as efficient hydride transfer agent towards NAD+ and also NADP+. The regioselectivity of the NAD(P)+ reduction by these rhodium-hydride complexes to form almost exclusively the enzymatically active, 1,4-isomer has been explained in the case of the [Rh(III)H(terpy)2]2+ system by a complex formation with the cofactor[65]. The reduction potentials of the complexes mentioned here are less negative than - 900 mV vs SCE. The hydride transfer directly to the carbonyl compounds acting as substrates for the enzymes is always much slower than the transfer to the oxidized cofactors. Therefore, by proper selection of the concentrations of the mediator, the cofactor, the substrate, and the enzyme it is usually no problem to transfer the hydride to the cofactor selectively when the substrate is also present [66]. This is especially the case when the work is performed in the electrochemical enzyme membrane reactor. [Pg.110]

Introduction 231 Fundamental concepts 233 Electronic structure of transition-metal ions 235 Structural characteristics necessary for complex formation 240 Preparation of metal-complex colorants 248 Isomerism in metal-complex dyes 260 Stability of metal-complex dyes 261 Chromium-related problems in the mordant dyeing of wool 268 References 277... [Pg.448]

We resume the problem discussed in Example 2.2 and solve the same problem, but now we correct for electrostatic effects. Sumarizing the problem Calculate the pH dependence of the binding of a) a metal ion Me2+, and b) of a ligand A to a hydrous oxide, SOH, and compare the effect of a charged surface at an ionic strength I = 0.1. A specific surface area of 10 g m 2 10 4 mol surface sites per gram ( 6 sites nnrr2) concentration used 1 g e-1 (10 4 mol surface sites per liter solution). As before (Example 2.2) the surface complex formation constants are log Kj = -1 and log K = 5, respectively. [Pg.71]

Estimate the variation of surface charge of a hematite suspension (same charac-teristics as that used in Example 7.2) to which various concentrations of a ligand H2U (that forms bidentate surface complexes with the Fe(III) surface groups, FelT such a ligand could be oxalate, phtalate, salicylate or serve as a simplified model for a humic acid we assume acidity constants and surface complex formation constants representative for such ligands. The problem is essentially the same as that discussed in Example 5.1. We recalculate here for pH = 6.5. [Pg.260]

Exactly the same problem arises with the recent studies of NiO solubility by Tremaine and Leblanc (25) and again the thermodynamic data on the aqueous anionic species at 300 C are likely to be more reliable than on the Ni + ion. There is good spectroscopic evidence for complex formation in chlorides of nickel (II), (26) cobalt (II) (27), and copper (II) (28) at 300°C and above. Most of the work was done at rather high Cl concentrations but qualitatively the effects of dielectric constant and concentration are as expected. A noteworthy feature (which estimation procedures will have to allow for) is the change from 6 to 4 coordination at the lower pressures (150-300 bar) and the higher Cl concentrations. This change appears to take place with only 2 or 3 Cl ions coordinated to the metal (at least in the case of Ni(II)). [Pg.663]

To overcome these problems of bisligand complex formation and autooxidation often sterically more bulky ligands are applied in these models. The bd bpza ligand which was discussed earlier is an example for this concept. The backdraw of these bulky ligands is that it restricts the access to the metal center and therefore changes the reactivity of the model complexes. Often these complexes and the metal environment are too crowded to allow any functional activity. [Pg.152]

A similar problem of complex formation may be encountered if either amino or phenol groups are present in the substrate, and the reaction may fail. Under such circumstances, these groups need to be blocked (protected) by making a suitable derivative. Nevertheless, Friedel-Crafts acylations tend to work very well and with good yields, uncomplicated by multiple acylations, since the acyl group introduced deactivates the ring towards further electrophilic substitution. This contrasts with Friedel-Crafts alkylations, where the alkyl substituents introduced activate the ring towards further substitution (see Section 8.4.3). [Pg.309]

Information about the stoichiometry of selector-selectand complex is difficult to gain from CE. However, this knowledge is useful in order to characterize the structure of intermolecular complexes as well as for the calculation of the binding constants. Previous research and review papers (3, 4,62,65) summarize the application of this technique to the problems related to chiral CE. As shown in Fig. 4, despite the involvement of different parts of the CL molecule in complex formation, the stoichiometry of CL complexes most likely is the same (1 1) with /3-CD and HDAS-/3-CD (65). [Pg.206]


See other pages where Problem 12-20 Complex formation is mentioned: [Pg.401]    [Pg.12]    [Pg.540]    [Pg.206]    [Pg.174]    [Pg.137]    [Pg.244]    [Pg.185]    [Pg.384]    [Pg.459]    [Pg.3]    [Pg.180]    [Pg.444]    [Pg.167]    [Pg.347]    [Pg.129]    [Pg.261]    [Pg.455]    [Pg.507]    [Pg.257]    [Pg.28]    [Pg.148]    [Pg.401]    [Pg.59]    [Pg.151]    [Pg.385]    [Pg.120]    [Pg.425]    [Pg.691]    [Pg.520]    [Pg.2]    [Pg.155]   


SEARCH



© 2024 chempedia.info